Motion Control & Drives


Sensorless control of brushless

August 2025 Motion Control & Drives

Many applications would benefit from a brushless motor without a sensor. A method developed by maxon is now setting new standards for precision and reliability.

Driving a brushless motor requires control electronics for precise commutation. However, this is possible only if the control electronics ‘know’ the exact position of the rotor at all times. Traditionally, this information was provided by sensors installed inside the motor. But, it can be done differently. Sensorless control methods use current and voltage information from the motor to determine the rotor position. The motor speed can then be derived from changes in the rotor position and this information can be used for speed control. More advanced sensorless control methods can even control the torque and the position. Leaving out the sensors has a range of benefits, such as lower cost and space saving, because cables, connectors and sensitive electronic circuits become unnecessary.

Sensorless controllers by maxon use three basic principles that are adapted specifically to maxon BLDC motors.

Principle 1: EMF method with zero crossing

The EMF method with determination of the zero crossing uses induced voltage (or EMF) in the non-powered phase during block commutation. The zero crossing happens in the middle of the commutation interval. The time delay to the next commutation point can be estimated from the preceding commutation steps.

The EMF method with zero crossing works only when the speed is high enough, because EMF becomes zero at standstill. Starting up the motor requires a special process, similar to step motor control, and must be configured separately. True sensorless commutation is possible only with motor speeds of 500 to 1000 rpm and up. The EMF method works for all brushless motor models, and it is robust and cost-effective. This approach is used in many standard products, such as the maxon ESCON Module 50/4 EC-S.

Principle 2: Observer-based EMF method

Observer or model-based EMF methods use information about the motor current to determine rotor position and speed. The model-based approach yields a much higher resolution of the rotor position. This enables sinusoidal commutation (or field-oriented control), with all its benefits − higher efficiency, lower heat generation, less vibration and noise.

Principle 3: Magnetic anisotropy methods

Methods based on magnetic anisotropy deduce the rotor position from the motor inductance, which is minimal when the magnetic flows of the rotor and the stator are in parallel in the magnetic return. Measurement is achieved by means of brief current pulses, which do not cause the motor to move. Unlike EMF-based methods, this method also works at standstill or very low speeds and it permits sinusoidal commutation. The measured signals are highly dependent on the motor type. The rotor position is determined in a model of the motor, which needs to be parameterised and adapted for each motor.

Why sensorless control?

In price-sensitive applications the use of sensorless motors may reduce the cost. Hall sensors, encoders, cables and connectors become unnecessary. Typical applications in this field are fans, pumps, mills and other fast-turning applications with a relatively modest control performance that do not require a tightly controlled startup.

Cost optimisation for high control performance

Cost savings aren’t the only reason to choose sensorless control. Applications like door drives or bike drives require high controller performance. Jerk-free motor control from zero rpm is important, as are high dynamics and sinusoidal commutation for noise avoidance. All this needs to be realised without using an expensive encoder. Over the last few years, high-quality sensorless controllers based on the anisotropy method have become established, including maxon’s new High Performance Sensorless HPSC Control. However, the engineering effort required for adapting the model parameters can only be justified for quantities upward of a few hundred.

Rough ambient conditions

Sensorless control may also be required in situations where vulnerable sensor electronics need to be avoided in a motor. Examples include applications in very high or low ambient temperatures, cleaning and sterilisation in medical technology, and ionising radiation in space, nuclear facilities or medical settings. The lower number of motor connectors also makes integration easier if space is limited.

Summary

There are three main reasons for choosing sensorless control: Cost savings, space savings and operation in environments unfavourable to sensors. The EMF method with zero crossing determination is widespread in cost-sensitive applications that run at high speeds. Sensorless control from standstill and at low speeds requires more advanced methods. The implementation effort is greater and includes modelling and parameterisation. Cost savings are secondary. Field-oriented control yields a higher efficiency, less heat buildup and a lower vibration and noise level.

For more information contact DNH Tradeserve, +27 11 468 2722, [email protected], www.dnhtrade.co.za




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Robotic filling systems for the pharmaceutical industry
Motion Control & Drives
Pharma Integration, a leading pharmaceutical manufacturer, aims to replace traditional mechanical filling lines with compact, fully automated systems that are 100% robot-driven using machines known as Azzurra. Their integrated Faulhaber drives play a crucial role in the fill-finish process, ensuring the highest precision and safety across multiple production steps.

Read more...
New generation soft starter ranges
Motion Control & Drives
Schneider Electric has launched its new generation Altivar ATS430 and ATS490 soft starter ranges in Anglophone Africa, the latest innovations in motor control technology.

Read more...
Machinery maintenance and the hidden cost of fuel adulteration
Motion Control & Drives
Fuel adulteration is one of the most insidious threats to industrial machinery, safety and environmental compliance. Craig FitzGerald, chief executive officer of ISO-Reliability Partners, discusses how this widespread issue undermines mechanical performance and operational safety, and also poses significant legal and financial risks.

Read more...
Precise information in the cockpit with FAULHABER stepper motors
Motion Control & Drives
For the display of Bugatti’s upcoming luxury model, Tourbillon, something truly special will be presented. Instead of a digital version, the driver will see a genuine Swiss timepiece behind the steering wheel.

Read more...
Complete mine hoist systems
Motion Control & Drives
From friction to single and double drum hoists, ABB is a complete supplier of various types of mine hoist systems.

Read more...
Innovative braking technology for heavy-duty hoists
Motion Control & Drives
The electro-hydraulic disc brakes in the DX series from RINGSPANN have been re-engineered, and are proving to be a trendsetter in the holding and emergency stop systems in the hoists of heavy-duty and container cranes.

Read more...
Largest private wind farm in South Africa
Motion Control & Drives
The Witberg wind farm will prevent the emission of more than 420 000 tons of CO2 per year in 122 000 households in the Western Cape.

Read more...
The environmental benefits of correct lubrication storage
Motion Control & Drives
While selecting the right lubricant for an application is key, how that lubricant is stored between applications is an often overlooked but critical aspect of reducing contaminants in machinery across a plant or site.

Read more...
Sustainability is transforming fluid power
Editor's Choice Motion Control & Drives
Sustainability is reshaping the future of fluid power. With the growing demand for cleaner, more efficient technologies and tightening global regulations, fluid power systems are being re-engineered for higher efficiency, lower emissions and reduced material usage.

Read more...
Demystifying demulsifier additives
Wearcheck Motion Control & Drives
Water is one of the most destructive contaminants in lubricants. Demulsifier additives prevent the formation of a stable oil-water mixture or an emulsion by changing the interfacial tension of the oil so that water will coalesce and separate more readily from the oil.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved