Electrical Power & Protection


An alternative approach to hydrogen storage

Technews Industry Guide: Sustainable Manufacturing 2024 Electrical Power & Protection

Large industrial hydrogen hubs are coming our way and will be key to decarbonisation. But storing hydrogen is hard, and existing approaches are unlikely to be a good fit in these settings. At Gravitricity, we are developing an approach to hydrogen storage that is specifically designed to deliver on what these industrial hubs will need.

The vital role of hydrogen

It is clear that hydrogen produced from renewable energy will play an important role in supporting our transition away from fossil fuels to a low-carbon energy system. But the precise nature of that role is more contentious. It is not obvious to everyone, for example, that the ‘hydrogen-ready’ domestic boilers we’re being promised will ever have these capabilities tested.

But while electrification, if practical, will often be the best route to decarbonisation, there are some applications – high-grade industrial heat, large-scale transportation and long-duration energy storage among them – where electrification will be more challenging. It is here that hydrogen will step in, providing a low-carbon option where there are few alternatives. These cases will drive the growth in global hydrogen demand, projected by the IEA to double to reach 180 Mt by 2030. It is likely that green hydrogen will be produced, stored and consumed close by at large, industrial sites with one or more significant users, often around the coast where cheap offshore wind generation can power the hydrogen electrolysers and compressors.

Hydrogen storage

The ability to store hydrogen at these sites will be critical to ensure users have reliable flows when needed. Two hydrogen storage solutions alternatives are commonly proposed. Salt caverns are very large underground spaces created by injecting water to dissolve geological rock salt. The storage potential of each cavern is large, but they can only be situated where suitable salt formations exist. In practice, storing hydrogen in salt caverns means expensive upgrades to the gas network infrastructure. There are also problems with hydrogen purity, and slow access and lead times. At the other end of the scale are pressurised metal vessels, which can be located anywhere. But hydrogen storage potential per cylinder is much smaller, and with all the metal required to contain the pressurised hydrogen, they are an expensive option which takes up valuable space on site while presenting a health and safety hazard to nearby infrastructure.

A new approach to hydrogen storage

Gravitricity is best known for the gravity-based energy storage technology which we will be deploying in old mine shafts. But we’ve always believed that underground spaces have energy storage potential beyond gravity, and we’ve been focusing on how fuel gases, particularly hydrogen, can be stored safely and effectively underground.

Our solution, which we call H2 FlexiStore, is based on a gas tight metal liner within an underground shaft, where the surrounding geology will exert pressure on the container, enabling higher pressures (and more hydrogen) at a lower cost. The storage capacity of around 100 tons of hydrogen per shaft offers a mid-scale solution to deliver the needs of industrial hydrogen hubs.

FlexiStore has several significant advantages over traditional approaches to hydrogen storage. It can store hydrogen in the quantities required to match supply via electrolysis with the demand from onsite industrial activities. It can be located where it is needed, and is not dependent on particular geological formations or expensive hydrogen transport infrastructure. Limited transportation infrastructure and lower metal requirements make the H2 FlexiStore solution highly competitive in cost per unit of hydrogen stored. H2 FlexiStore is also inherently safer than above ground storage, as no oxygen is present to create an explosive mix. H2 FlexiStore’s steel lining means that hydrogen can be stored underground, while maintaining purity. Alternative underground options will require expensive scrubbing equipment to remove contaminants. To put it into perspective, 100 tons of hydrogen yield about 3 GWh of energy, and if the system was fully charged and discharged each day it could absorb the average energy from a 500 MW offshore wind farm.

We have recently concluded a feasibility study which confirms the viability of this approach and are now building upon this work with an accelerated technology development project. At the same time, we are actively building partnerships with people and organisations who, like us, see the vital role which hydrogen will play in our decarbonised energy system, and who understand that the infrastructure to support this new hydrogen economy will need to fit the specific requirements of green hydrogen producers and consumers.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Navigating solar energy adoption
Electrical Power & Protection
Although South Africa’s enhanced solar tax rebate has ended, solar and energy storage solutions remain accessible and achievable. By taking a proactive and strategic approach, businesses can successfully lower their operational costs, mitigate power outages, and secure long-term energy independence.

Read more...
As wind energy gains momentum, lack of grid infrastructure remains a bottleneck
Electrical Power & Protection
Interest in wind energy has gained significant momentum in South Africa, opening up new opportunities for investment. However, lack of grid infrastructure could prove to be a stumbling block in unlocking this potential.

Read more...
Portable appliance tester
Vepac Electronics Electrical Power & Protection
The new appliance tester from Vepac is the ideal tool for testing the safety of electrical appliances in accordance with DGUV regulation 3 and BetrSichV. It enables the precise measurement of protective conductor or touch current using the equivalent leakage current method.

Read more...
Is sustainability enough any more?
Electrical Power & Protection
With the planet’s resources stretched to the brink and no signs of improvement, it is time we look beyond sustainability and explore regenerative thinking and design.

Read more...
A simple guide to understanding the importance of IP ratings
Electrical Power & Protection
When selecting electrical products for industrial, commercial or even domestic use, it is crucial to consider how well they can withstand environmental factors like dust and water. This is where ingress protection (IP) ratings come into play.

Read more...
A milestone in electrical safety
ABB South Africa Electrical Power & Protection
Celebrating a milestone in electrical safety, ABB proudly marks the 100-year anniversary of its revolutionary Miniature Circuit Breaker.

Read more...
The power of water
Editor's Choice Electrical Power & Protection
The Alpenglow Hy4 is the world’s first water-based hydrogen combustion engine, offering a convincing alternative to traditional battery-electric vehicles and established hydrogen fuel cell designs.

Read more...
Optimising purification for green hydrogen production
Parker Hannifin - Sales Company South Africa Editor's Choice Electrical Power & Protection
Parker Hannifin delivers advanced purification and thermal management components that enhance green hydrogen production.

Read more...
A new chapter in geothermal engineering
Editor's Choice Electrical Power & Protection
The town of Geretsried in southern Germany has become a focal point in the global shift toward renewable energy. While the world’s attention often turns to wind turbines and solar panels, a quieter but no less powerful force is at work deep beneath the surface, geothermal energy.

Read more...
Harnessing the ocean with wave energy
Editor's Choice Electrical Power & Protection
Wave energy is emerging as one of the most promising yet underutilised renewable sources. Tapping into the rhythmic, predictable power of ocean waves, this technology offers a clean, reliable alternative to fossil fuels and a valuable complement to wind and solar energy.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved