IT in Manufacturing


The role of technology in mining safety and environmental protection

March 2024 IT in Manufacturing


Kate Collier.

Years since the rudimentary and now proverbial use of canaries in coal mines to detect hazardous conditions, mechanical and technology-based equipment is essential in the early detection of hazards, many of which may not be immediately visible or detectable by employees. The history of the use of technology in mining demonstrates its enormous value, particularly when combining increased safety with deeper and more advanced mining methods.

Is the law keeping up with technology in health and safety?

In recent years, South African mining safety legislation has made strides towards incorporating the use of technology, but this does not come without its own pitfalls. Systems for warning pedestrians near trackless mobile machinery or speed limiters on moving machinery are well used and understood, for example. The regulator, however, needs to strike a careful balance between keeping regulations and expectations of employers up to date, while remaining mindful of the practicalities of the real availability of technology in the South African market, reasonable expectations on capital allocation, and the protection of jobs.

Practical achievability is an important consideration in ensuring both the buy-in of industry and enthusiasm for these changes. The reason for technological advancement, and the benefits it may be expected to reap, cannot be a justification for the premature promulgation of legislation, that renders the law impossible to comply with. This is not to say that those laws should be discouraged – rather that careful consideration be given to the ability of the industry to comply with them.

There are many important legal developments that are contemplated and which should be encouraged. An example is the April 2023 draft amendments to regulation Chapter 16 of the regulations to the Mine Health and Safety Act (MHSA). This stipulates that missing person locator systems be implemented at mines with a significant risk of slope failure, requiring those mine operators to incorporate this technology into safety and emergency response. This can only be a positive development – assuming that industry, including suppliers and manufacturers of the systems, is fully prepared ahead of the effective date. This includes aspects such as completing the necessary risk assessments, identifying suppliers, allocating sufficient budget, safe testing and roll out, and adequate training of users.

Central to the safe and effective use of technology and AI in safety is the identification of appropriate checks and balances or safeguards. Over-reliance on technology can yield its own risks and present different dangers, which must also be factored into risk management. Technology can, and does, fail. The safe use of technology in safety management requires that the potential failure of technology be planned for.

One the greatest impact areas that we see for AI and technology in mine safety is its application in training. Virtual reality training can provide employees with realistic training, allowing for practical and safe assessment of employees in virtual workspaces and for safe cross-over between theoretical training to on-the-job application.

New technologies are also required to improve the efficiency of mining by improving ratios of products being mined versus waste being generated and disposed of. Such technologies focus on mechanical cutting, sensor-based ore sorting and diversion of waste at source. Further developments could see the introduction of improved extraction technologies to re-mine old waste and dispose of remaining waste on newer and safer waste facilities with a net positive effect on the environment. This would enhance the role of technology in protecting the environment and sustainable mining.


Garyn Rapson.

Incorporating green and renewable energy within mines

The mining industry has demonstrated a shift to incorporating green and renewable energy into medium- and long-term operational objectives. But chemical plants, processing facilities, refineries, and other hazardous installations are vulnerable to the risk of explosion and other devastating effects that risk environmental and employee safety. An approach to preventing harm in these circumstances is the incorporation of remote operability and monitoring. Minimising the need for direct human intervention in critical, but dangerous, operations reduces the risk of human error.

Advancements in data analytics and sensor technology facilitate real-time monitoring of safety parameters, enabling early intervention and risk mitigation. In this way, mining operations may minimise the environmental impact of their activities through early and automatic detection of data shifts that indicate possible risks. Many industrial machines already have enhanced capabilities to collect and interpret data that enable operators to track harmful emissions in real time. This may facilitate early corrections before any harm occurs to the environment, thus enabling a more sustainable and responsible approach to resource extraction and processing.

Is AI the ultimate solution?

Artificial intelligence (AI) will significantly alter the way mines approach risk assessments, environmental monitoring, impact predictions and training initiatives. By using digital twins, virtual environments, and simulated scenarios, designated officers can identify potential hazards and conduct training exercises without exposing personnel to real-life risks. In addition to minimising operational downtime and identifying unanticipated risks to human lives, maintenance teams can assess and inspect a virtual 3D environment before carrying out physical maintenance. 3D environments will also be valuable in emergency response and rescue situations to enhance environmental and employee safety before people are deployed to unsafe conditions.

However, the integration of AI and other automated solutions also presents challenges, particularly regarding data integrity. The effectiveness of such technology often lies in the quality, quantity and frequency of the data it relies on. Whether data is collected from manual input, or is gained from other technology such as sensors, videos, tracking devices or pressure monitors, there are risks inherent in both methods of data collection that must be catered for. Likewise, cybersecurity will become an important feature of safety protocols within health and safety frameworks given the impact that hacked or failed systems might have on human lives and the environment.

To tech or not to tech

In selecting appropriate technologies, a tailored approach is essential. Solutions must align with specific operational needs and safety requirements. They must be appropriate to the risks of the particular site and ensure that any hazards presented by the introduction or use of technology are addressed and controlled.

The selection of appropriate technology depends heavily on the competencies of those selecting it. Embracing innovation is a cornerstone of safety and environmental strategies. By prioritising proactive investment into technology, the industry can foster a culture of safety, sustainability and resilience.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Optimising the product design process
Siemens South Africa IT in Manufacturing
OPmobility is partnering with Siemens to adopt its Teamcenter X Product Lifecycle Management software. OPmobility’s increasingly complex products now include electronics and software, to create energy storage systems, which include battery and hydrogen electrification solutions and fuel tanks.

Read more...
Smart milling for resilient, sustainable food production
IT in Manufacturing
As the global demand for food continues to rise due to increasing urbanisation, the milling industry faces the challenge of balancing efficiency with sustainability. Bühler is committed to making milling more energy-efficient while maintaining high operational performance. Its solutions allow mills to reduce energy costs and ensure long-term sustainability.

Read more...
The evolving landscape of data centres in the age of AI
Schneider Electric South Africa IT in Manufacturing
The data centre industry is undergoing a period of rapid transformation, driven primarily by the explosive growth of AI. It’s clear that the demands of AI are reshaping the very foundations of data infrastructure. This isn’t merely about incremental upgrades; it’s a fundamental shift in how we design, power and operate these critical facilities.

Read more...
SA Food Review
IT in Manufacturing
Food Review is a monthly trade journal for South Africa’s food and beverage manufacturing industry, for industry professionals seeking detailed information on trends, technologies, best practices and innovations.

Read more...
Keeping an eye on oil consumption with moneo
ifm - South Africa IT in Manufacturing
Manufacturing companies in the metal industry need oils and other fluids that are consumed by their machines. To make this consumption transparent and to establish a link to the ERP system, Arnold Umformtechnik relies on the IIoT platform, moneo, in combination with the SAP-based software solution Shop Floor Integration (SFI) – both from ifm.

Read more...
AI accelerates energy transformation
RJ Connect IT in Manufacturing
With the rapid expansion of generative AI applications, data centre power demand is reaching unprecedented levels.

Read more...
Revolutionising mining operations with MineOptimize
IT in Manufacturing
Now more than ever, mining and mineral processing companies need to boost productivity, ensure safety, and protect the environment. ABB’s comprehensive electrification, automation and digital solutions portfolio is ideally positioned to meet these challenges across all mining processes, from mine to port, transforming performance in a digital world.

Read more...
Buildings in Africa’s urban evolution
Schneider Electric South Africa IT in Manufacturing
Africa is now an urban continent. How does the continent mobilise to accommodate urban dwellers and maintain and implement critical infrastructure that allows for this expansion? Building management systems provide a tangible solution to optimise resource use, lower operations costs and ultimately contribute to a growing continent that also employs green practices.

Read more...
TwinCAT Vision functionality extended
Beckhoff Automation IT in Manufacturing
The image processing and camera integration capabilities of Beckhoff’s TwinCAT 3 Vision software have been expanded.

Read more...
Automation software to future-proof your operations
Adroit Technologies IT in Manufacturing
As the official partner of Mitsubishi Electric Factory Automation, Adroit Technologies empowers businesses with cutting-edge solutions that reduce costs, improve quality and increase productivity.

Read more...