Editor's Choice


How to look after your pressure gauge

November 2023 Editor's Choice Pressure Measurement & Control

Pressure and temperature gauges are very widely used on process plants. Gauges are relatively inexpensive, and because they are installed in large numbers, maintenance can be neglected, resulting in unreliable and compromised instruments. Some plants choose not to replace failed gauges until they have to, and sometimes that is too late.

A properly maintained and calibrated gauge will accurately indicate how a system is performing. Part of that function is to enable early detection of potential plant failures or accidents. Poorly maintained, inaccurate gauges can compromise a plant’s ability to detect potential problems. Accidents, damage and injury to equipment and personnel is often the result.

Incorrect selection, installation, and neglecting to maintain pressure gauges can also result in unplanned production downtime, process issues and inferior product quality. In addition, allowing instruments that are critical to a process to drift out of specification can be a risk to employee safety. The cost of calibration is normally insignificant compared to the potential loss of production or injury costs. Ultimately, one needs to be able to trust the reading one gets from a pressure or temperature gauge.

The use of pressure transmitters as the primary source of pressure measurement in sophisticated process applications is very common. However, as a backup to these electrical readings, and as a local display, mechanical dials indicating pressure gauges are still used on many systems. Today’s mechanical pressure gauges still employ old and proven technology in the form of a bourdon tube soldered or welded to a socket, with the tip of the bourdon tube connected to a geared movement. This indicates the pressure applied via a pointer and dial. Since the pressure gauge is a purely mechanical instrument, process conditions must be carefully considered before selection to ensure optimum accuracy and safety, and to maximise the instrument’s service life. In addition, best practice in measurement requires that special precautions be taken when dealing with process conditions such as extreme ambient temperatures, corrosive or solidifying media, vibration, pulsation, and overpressure.

SA Gauge specialises in the design and manufacture of pressure and temperature measuring instruments. In addition to its absolute commitment to customer satisfaction, the company goes to great lengths to educate its customers so that they can make the best possible use of their pressure and temperature gauges. SA Gauge believes that all process and ambient factors should be considered when selecting and installing pressure measuring devices, and recommends that the following guidelines on selection and calibration be followed in order to prevent gauge failure.

Working pressure

Although pressure gauges will tolerate full-scale pressure for short periods, in general the working pressure should not exceed 70% of the full-scale value. For thermometers, media pressure should not exceed 2500 kPa without the use of a suitable thermowell.

Wetted parts

These must be compatible with the process media. Choose from Cu-alloy (brass) or stainless steel 316. With media that can corrode the wetted parts or obstruct the pressure port, a diaphragm-type chemical seal should be selected.

Temperature

The maximum permitted process temperature for pressure gauges with brass wetted parts is 70°C. For stainless steel wetted parts, the maximum process temperature should not exceed 100°C. Ambient temperatures are permitted from -20 to 60°C. Errors in accuracy need to be considered when using gauges above or below calibration conditions – usually 22°C.

For applications where process temperatures exceed permissible levels, the media needs to be cooled down before entering the instrument. Accessories like cooling towers, siphon tubes, capillary assemblies, and diaphragm seals are typical devices used to separate and protect the instrument from the process heat source.

Corrosive and solidifying media

Some aggressive or corroding process media can attack copper-alloy or stainless steel 316, or solidify and obstruct the pressure port of the gauge. Diaphragm seals are designed to isolate the pressure gauge from the media to ensure accurate and reliable pressure readings. The wetted parts of the diaphragm seal are made from materials appropriate to the process such as stainless steel 316, hastelloy, tantalum or PTFE.

Vibration

Due to the purely mechanical nature of pressure gauges, vibration is one of the main reasons for premature gauge failure. Linkages, gears and bushings are all parts suffering from excessive wear when exposed to vibration. Pointer oscillation makes accurate reading difficult, but can be avoided by filling the gauge with glycerine or silicone oil. Liquid filling of gauges lubricates all the friction points, ensuring longer instrument life.

Pulsation

Dynamic load cycles of pumps and valves that cause a rapid change in pressure in a system cause metal fatigue in the elastic bourbon sensing element, resulting in gauge failure. While glycerine filling of the gauge will assist in countering pointer flutter, it cannot prevent the damage caused by pulsation to the bourdon tube. A flow restricting device is the best option here. Pulsation dampers such as inlet restriction or piston type snubbers restrict the pressure pulsation.

Overpressure

Overpressure typically occurs when a pressure gauge is subjected to a sudden rush surge of process pressure, such as when full bore valves are quickly and completely opened under load. This short period spike in the system subjects the gauge to more pressure than it is designed for, resulting in permanent damage. To prevent this, SA Gauge manufactures an overpressure protector that can be adjusted and locked to shut the process pressure off at a given set pressure. The spring-loaded overpressure protector automatically opens again once the overpressure condition has passed. On certain ranges there are diaphragm-operated gauges available that are capable of coping with five times overpressure without any permanent damage.

Installation

Always secure the instrument by means of a suitable wrench on the hexagon/square of the threaded connection. Twisting the instrument by hand on the case can cause damage to the internals of the instrument. For gauges with flanges, support the gauge fitting with a suitably sized wrench to counter the force of tightening the process fitting. This will prevent damaging the gauge internals.

Calibration

Even the highest quality instruments are subject to drift over time, resulting in inaccurate measurements and substandard performance. It is important that all instruments are calibrated by approved personnel. Calibration intervals and error limits should be defined, and records of the calibration results should be kept, maintaining instrument integrity. SA Gauge’s calibration laboratories are SANAS ISO/IEC 17025 accredited, and maintain the highest accuracies to ensure international traceability.

SA Gauge is driven by a ‘customer satisfaction at all costs’ sales team, a ‘results driven’ engineering team, and a ‘first time right’ production team. Coupled with the company’s high internal standards for quality control, this philosophy ensures that its customers can be sure of receiving accurate and high-quality instruments that are made to their specifications at short notice.


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

STEMulator – a gift to the youth of the nation
Editor's Choice News
STEMulator is a groundbreaking virtual platform designed to ignite the spark of curiosity in young minds and stimulate their interest in STEM subjects.

Read more...
Innovate, accelerate, dominate
Festo South Africa Editor's Choice Pneumatics & Hydraulics
Festo’s latest innovations, revealed through the Ramp Up Campaign, offer a blueprint for performance excellence, using the anatomy of a race car as an analogy to simplify and powerfully communicate how their technologies address industry challenges.

Read more...
Case History 198: Cascade control overcomes valve problems.
Editor's Choice Flow Measurement & Control
There are many processes where it is undesirable for the load to suddenly change quickly, for example in the paper industry. Examples of level control have involved reasonably fast tuning. An example of a level loop tuned this way and responding to a step change in setpoint is given.

Read more...
Advanced telemetry solutions
Editor's Choice Industrial Wireless
Namibia is one of the driest countries in sub-Saharan Africa, with an average annual rainfall below 250 mm. To address this challenge, the Namibia Water Corporation has employed one of southern Africa’s most powerful and well-proven telemetry solutions, designed and manufactured by SSE/Interlynx-SA.

Read more...
Navigating the future of intralogistics
LAPP Southern Africa Editor's Choice
In the rapidly evolving landscape of global markets, the demand for agility, efficiency and scalability in intralogistics has never been more critical. At LAPP Southern Africa, we stand at the forefront of this transformation, offering cutting-edge connection solutions tailored to the dynamic needs of intralogistics.

Read more...
Cutting-edge robotics and smart manufacturing solutions
Yaskawa Southern Africa Editor's Choice
Yaskawa Southern Africa made a compelling impact at this year’s Africa Automation and Technology Fair.

Read more...
A cure for measurement headaches in contract manufacturing
VEGA Controls SA Editor's Choice
A contract manufacturing organisation provides support to pharmaceutical and biotechnology companies in the manufacturing of medications, formulations and substances. VEGA’s measurement solutions offer accuracy and reliability for monitoring levels and pressures during the manufacturing process.

Read more...
PC-based control for a food capsule and pod packaging machine
Beckhoff Automation Editor's Choice
For TME, a machine builder specialising in the packaging of powdered foods, Beckhoff’s PC-based control technology offers unlimited opportunities when it comes to performance and innovative capacity in terms of flexibility, scalability and openness.

Read more...
Simple and efficient level measurement in the mining, minerals and metals industries
Endress+Hauser South Africa Editor's Choice Level Measurement & Control
Measuring devices in the mining, minerals and metals industries face the challenge of varying material states and long distances in measurement height. Endress+Hauser’s answer to these challenges is the new Micropilot family.

Read more...
PC-based control for fertiliser
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
On a farm in the USA, valuable ammonia is extracted from slurry and processed into ammonium sulphate. NSI Byosis has transformed this complex process into a flexible modular system. This modular approach requires an automation solution with flexible scalability in both hardware and software, which this Dutch company has found in PC-based control from Beckhoff.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved