Editor's Choice


Biggest magnet in the world

Technews Industry Guide: Sustainable Manufacturing 2023 Editor's Choice

The world’s largest and most powerful magnet is the Central Solenoid magnet in the ITER fusion reactor in France. Built by General Atomics, it is the result of over five years of research and development, and the statistics are mind-blowing. This giant pulsed superconducting electromagnet is 18 metres tall, 4,2 metres wide, and weighs around 90 700 tons. Its strength is 13 teslas at its core, which is about 280 000 times the strength of the earth’s magnetic field. It will play a critical role in the new ITER fusion reactor, which is a collaborative project among 35 nations.

The project aims to achieve sustained nuclear fusion to replicate the process of energy production in the centre of the sun. If successful, the fusion reactor will be a major breakthrough in providing large-scale clean electricity and combating global climate change. General Atomics says that Central Solenoid is strong enough to lift the 101 600 ton USS Gerald R Ford, the world’s biggest aircraft carrier, two metres into the air. It is so strong, a structure has been built to house it which needs to be able to withstand forces twice that of a space shuttle taking off.

The promise of fusion

In nuclear fusion a small amount of vapourised deuterium and tritium is released into a large, doughnut-shaped vacuum chamber known as a tokamak. The tokamak superheats these isotopes, stripping away the electrons and converting the gas into plasma. This superhot plasma reaches 150 million °C, or ten times hotter than the core of the sun. At this temperature, the atoms undergo fusion, giving off large amounts of energy, which can be used to create electricity by heating water, and creating steam to turn turbines.

One of the biggest hurdles to sustained fusion is containing and manipulating the searing plasma inside the reactors. This is where the Central Solenoid comes into play. The powerful magnetic field it creates will pin the plasma in place inside the tokamak, and maintain the reaction.

How it’s made

The Central Solenoid is made up of six individual modules stacked inside the centre of the ITER reactor. Each individual module is essentially a big coil containing around 5,6 kilometres of steel-jacketed niobium-tin superconducting cable. The module is then heat treated in a large furnace for several weeks to further increase its conductivity, after which the cables are insulated and the coil is wrapped into its final shape.

After insulation, the module is enclosed in a mould, and 3800 litres of epoxy resin are injected under vacuum to saturate the insulation materials and prevent bubbles or voids. When hardened at 650°C, the epoxy fuses the entire module into a single structural unit.

The finished module is subjected to a series of demanding tests, placing it in the extreme conditions it will experience during operation, including near complete vacuum, and a cryogenic temperature of -270°C required for the magnet to become superconducting.

The mission

The Central Solenoid will play a critical role in ITER’s mission to prove that energy from hydrogen fusion can be created and controlled on an industrial scale, and to establish fusion energy as a practical, safe and inexhaustible source of clean, abundant and carbon-free electricity. The materials to power hydrogen fusion for millions of years are readily abundant, and the only by-product is helium. Like a gas, coal, or nuclear fission plant, a fusion plant will provide highly concentrated, baseload energy around the clock. Yet fusion produces no greenhouse gas emissions or long-lived radioactive waste. The risk of accidents with a fusion plant is very limited – if containment is lost, the fusion reaction simply stops.

Conclusion

Although ITER will not generate electricity, it will be a critical testbed for the technologies necessary for the commercial production of fusion-based electricity. The lessons learned at ITER will be used to design the first generation of commercial fusion power plants.

Central Solenoid is currently around 75% complete. The construction remains on track to finish by 2025, but full-scale fusion reactions won’t take place until 2035 at the earliest. “This project ranks among the largest, most complex and demanding magnet programmes ever undertaken,” says John Smith, General Atomics’ director of engineering and projects. “The ITER project is the most complex scientific collaboration in history,” says Dr. Bernard Bigot, director-general of ITER. “Without this global participation, ITER would not have been possible; but as a combined effort, each team leverages its investment by what it learns from the others.”




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

The thermal combustion balancing act
Editor's Choice
From carbon taxes to export tariffs, and cost containment to security of supply and sustainability, companies are under increasing pressure to switch to greener fuel sources. Associated Energy Services warns that this pivotal change has some potentially serious knock-on effects.

Read more...
What’s driving the IE3 motor revolution?
WEG Africa Editor's Choice
The International Efficiency 3 (IE3) motor standard will soon become South Africa’s legal minimum standard, mandating that local suppliers offer more efficient electric motors. What is driving this change, and how does it affect the many industries that rely on these modern electric workhorses?

Read more...
Unlocking the smart factory
ElectroMechanica Editor's Choice Motion Control & Drives
At ElectroMechanica, we recognise that transitioning to smart automation isn’t just about adopting new technology; it’s about solving real challenges. Labour shortages, rising costs and downtime due to outdated machinery make digital transformation essential for long-term competitiveness.

Read more...
Case History 197: Bad reboiler temperature control.
Michael Brown Control Engineering Editor's Choice Flow Measurement & Control
It is very important that reboiler temperature controls operate well in petrochemical refineries, or the product quality can really suffer. I was asked to check such a control in a refinery where they were having problems with one of these controls.

Read more...
The future of industrial automation: fieldbus and industrial networking
LAPP Southern Africa Editor's Choice
As a global leader in integrated solutions in the field of cable and connection technology, LAPP recognises that fieldbus and industrial networking technologies are pivotal in shaping the future of manufacturing and production processes.

Read more...
AI-driven innovations with CCTV and cyber security
RJ Connect Editor's Choice Fieldbus & Industrial Networking
The fast progress of artificial intelligence (AI) and video analytics is redefining the rail surveillance landscape. Advancements have bolstered proactive event detection, predictive maintenance and enhanced situational awareness.

Read more...
Loop signature 27: SWAG tuning of simple integrating processes.
Editor's Choice
The chief control engineer of one of the largest petrochemical refineries in South Africa once sent me an email after a course at his plant. He wrote that he had found the section on SWAG tuning of simple integrating processes one of the most informative of the whole course.

Read more...
Harnessing industrial AI agents for reliable automation
Editor's Choice IT in Manufacturing
The excitement around generative AI (GenAI) has been undeniable, promising wide-ranging changes across industries. However, for those of us in the world of industrial control and automation, the realities of implementing these powerful technologies are a little more nuanced.

Read more...
Futureproof your industrial network security with OT-centric cyber security
RJ Connect Editor's Choice
To achieve digital transformation, industrial operators must first address the daunting task of merging their information technology (IT) and operational technology (OT) infrastructure. In this article, we focus on the importance of strong OT network security and provide some tips on how to strengthen cybersecurity for industrial operations.

Read more...
The symbiotic relationship between OEMs and SIs
Schneider Electric South Africa Editor's Choice System Integration & Control Systems Design
While businesses tend to turn directly to original equipment manufacturers OEMs or vendors when embarking on IT projects, the role of the SI as a key facilitator and partner cannot be overstated.

Read more...