Editor's Choice


When safety instrumented systems and inadequate operators collide

September 2022 Editor's Choice

A safety instrumented system (SIS) is intended to reduce the risk of a harmful incident. This is achieved using a combination of hardware and software controls implemented on every unit in operation. A layered approach to protection is usually followed. Examples of instrumented controls include hardwired trip systems, interlocks and alarms.

Minimising the risk of failure

Containing the residual risk requires each of the control measures to be effective. During the design phase, teams of engineers and subject matter experts will perform a systematic analysis of the process to identify each possible hazard and then identify what controls need to be in place. The HAZOP is an example of such a technique.

Whichever method is used, it is worth remembering that the SIS itself can fail. We need to eliminate, as far as possible, the risk of underlying process failure coinciding with SIS failure, thereby leading to an incident. There are techniques for quantifying the reliability of SIS systems so that the real risk is adequately understood and mitigated. One example is the Safety Integrity Level (SIL) analysis.

Engineers tend to focus on physical equipment and not people

As instrument and automation engineers, we are trained to be comfortable with physical systems – but less so with systems involving people. When we review the causes of a significant incident, it is tempting to point to a hardware device as the underlying root cause of the failure. We tend to gloss over the importance of humans in the sequence of events that led up to such failure.

The consequences of people getting it wrong

In March 2005, the BP Texas City Refinery experienced a significant safety incident that resulted in 15 fatalities and 180 injuries, after a “geyser of flammable hydrocarbon liquid and vapour erupted from a blowdown stack, creating a huge fire”. Inexperienced operators had continued pumping flammable feedstock into the raffinate tower.

During the engineering design, the HAZOP and LOP (layer of protection) analysis should have picked up the scenario where liquid could be pumped for an extended period into a unit in operation without observing a rise in levels. Whether or not this possibility had been identified, the systems must have failed because, at the time, no alarm alerted the operators of what was happening, and the pump did not trip.

The investigation report made a very insightful observation. It noted that it is easy to identify the physical device that failed and that subsequently led to the incident. Investigators are prone to locate the person most closely associated with the failure of that device, be they operators, maintenance personnel, managers or others. The investigation often recommends a simple technical solution: fix the device, add some more SIL hardware and all will be well.

In the BP Refinery incident, the investigation concluded that there were more underlying problems than just the physical safety integrity system. The issues also lay with poor training and inexperienced people. This, combined with poorly maintained and deteriorating equipment, led to a high-risk situation that was an accident waiting to happen. In addition, while the plant’s deteriorating condition was understood to be a risk, fixing this would have required an extended shutdown, resulting in significant shareholder pain. The record will show that the shutdown did not happen in time.

Is it time to share our lessons learned between IT and OT?

IT managers and CIOs are all too familiar with system failure. Some would argue that this is due to a lack of proper methodology and discipline. However, as with industrial operations, IT projects rarely fail owing only to a technical issue. IT projects are particularly challenging because people need to change how they do things to take advantage of the system.

It occurred to me that this hard-earned experience from the world of IT can also be applied in the operations environment. With the convergence of IT and OT, best practices from the respective disciplines can be shared in ways that previously might not have been obvious.

Poor training and inexperience are disastrous in the world of IT projects – even more so when operating a hazardous refinery. Is it not time to get our heads together and come up with a more holistic solution that incorporates both the physical and engineering aspects, as well as the people factors, to keep our plants running safely and reliably?


About Gavin Halse


Gavin Halse.

Gavin Halse is a chemical process engineer who has been involved in the manufacturing sector since mid-1980. He founded a software business in 1999 which grew to develop specialised applications for mining, energy and process manufacturing in several countries. Gavin is most interested in the effective use of IT in industrial environments and now consults part time to manufacturing and software companies around the effective use of IT to achieve business results.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

STEMulator – a gift to the youth of the nation
Editor's Choice News
STEMulator is a groundbreaking virtual platform designed to ignite the spark of curiosity in young minds and stimulate their interest in STEM subjects.

Read more...
Innovate, accelerate, dominate
Festo South Africa Editor's Choice Pneumatics & Hydraulics
Festo’s latest innovations, revealed through the Ramp Up Campaign, offer a blueprint for performance excellence, using the anatomy of a race car as an analogy to simplify and powerfully communicate how their technologies address industry challenges.

Read more...
Case History 198: Cascade control overcomes valve problems.
Editor's Choice Flow Measurement & Control
There are many processes where it is undesirable for the load to suddenly change quickly, for example in the paper industry. Examples of level control have involved reasonably fast tuning. An example of a level loop tuned this way and responding to a step change in setpoint is given.

Read more...
Advanced telemetry solutions
Editor's Choice Industrial Wireless
Namibia is one of the driest countries in sub-Saharan Africa, with an average annual rainfall below 250 mm. To address this challenge, the Namibia Water Corporation has employed one of southern Africa’s most powerful and well-proven telemetry solutions, designed and manufactured by SSE/Interlynx-SA.

Read more...
Navigating the future of intralogistics
LAPP Southern Africa Editor's Choice
In the rapidly evolving landscape of global markets, the demand for agility, efficiency and scalability in intralogistics has never been more critical. At LAPP Southern Africa, we stand at the forefront of this transformation, offering cutting-edge connection solutions tailored to the dynamic needs of intralogistics.

Read more...
Cutting-edge robotics and smart manufacturing solutions
Yaskawa Southern Africa Editor's Choice
Yaskawa Southern Africa made a compelling impact at this year’s Africa Automation and Technology Fair.

Read more...
A cure for measurement headaches in contract manufacturing
VEGA Controls SA Editor's Choice
A contract manufacturing organisation provides support to pharmaceutical and biotechnology companies in the manufacturing of medications, formulations and substances. VEGA’s measurement solutions offer accuracy and reliability for monitoring levels and pressures during the manufacturing process.

Read more...
PC-based control for a food capsule and pod packaging machine
Beckhoff Automation Editor's Choice
For TME, a machine builder specialising in the packaging of powdered foods, Beckhoff’s PC-based control technology offers unlimited opportunities when it comes to performance and innovative capacity in terms of flexibility, scalability and openness.

Read more...
Simple and efficient level measurement in the mining, minerals and metals industries
Endress+Hauser South Africa Editor's Choice Level Measurement & Control
Measuring devices in the mining, minerals and metals industries face the challenge of varying material states and long distances in measurement height. Endress+Hauser’s answer to these challenges is the new Micropilot family.

Read more...
PC-based control for fertiliser
Beckhoff Automation Editor's Choice Fieldbus & Industrial Networking
On a farm in the USA, valuable ammonia is extracted from slurry and processed into ammonium sulphate. NSI Byosis has transformed this complex process into a flexible modular system. This modular approach requires an automation solution with flexible scalability in both hardware and software, which this Dutch company has found in PC-based control from Beckhoff.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved