IT in Manufacturing

Applying systems thinking to smart plants

April 2021 IT in Manufacturing

When we think about smart plants, we see an image of interconnected networks of smart devices capable of sensing the environment, understanding and predicting trends, and responding intelligently. Analysts often describe the smart plant in terms of the enabling technology – for example, the IIoT (Industrial Internet of Things), industrial Wi-Fi/5G, artificial intelligence, predictive analytics, cloud computing and more. It is probably fair to say that the technology choices for embedding ‘intelligence’ into a manufacturing plant are still far ahead of the number of real-world practical applications, at least for now.

As engineers and technicians, we tend to analyse systems by breaking them down into their constituent parts. In this way, we believe that to simplify complex systems all we need is to understand each component’s function. While this type of analysis can be useful, other techniques can result in better insights, particularly when the components are interconnected as in a smart plant. In this article, I would like to introduce systems thinking and explain why it is a valuable technique to understand smart plants.

Understanding complex systems

Systems thinking is not a new concept. It has been applied to the understanding of complex, interrelated biological systems for many years. It also happens to be ideal for understanding complex, interrelated systems, such as a manufacturing company. Systems thinking sees all things as interconnected at some level, and through this, something more significant emerges.

A systems thinking approach will avoid breaking down complexity into individual components. Instead, it considers the system as a whole, as a complex network of many interconnected elements. For example, a manufacturing plant is not something that operates in isolation. It is but one part of the value chain of a business, which is, in turn, a part of the wider supply chain network, which in turn forms part of a manufacturing cluster or ecosystem, and ultimately operates within the economy as a whole. Each piece of the network has a role to play and is connected to the other parts. While each piece has its objective, the system as a whole also has an objective.

Some of the terminology used in systems thinking is important. Within a system, the individual parts combine to ‘synthesise’ something new. Thus, an interconnected network’s effect is to create something more significant than the sum of the individual components. The result of this synthesis is the ‘emergence’ of new outcomes. In our example, the network of sensors on the plant will synthesise information that will allow the plant to respond to changes from the supply chain network. More customised products might emerge from this system.

The interconnected nature of a system means that there are also dependencies between the parts and the information flows between them, creating ‘feedback loops’. These loops have the result of either correcting and balancing the system, or reinforcing something desirable. The feedback loops could be local within intelligent devices or software, or in the decisions of a controller in the control room. Or they could be across the supply chain, such as demand planning and production scheduling. The coexistence of human and machine elements in these feedback loops is an important consideration.

Finally, ‘causality’ in systems thinking is an understanding of how the individual things in a system influence each other. Understanding this cause-and-effect relationship will allow a deeper understanding of the overall dependencies, and which feedback loops matter most within a system.

Systems thinking is an excellent conceptual tool for understanding how the smart plant will work in the future. It also provides a framework for viewing the physical plant as part of its network’s broader activity. When you view a business as a system, it becomes possible to analyse how the individual plant and business sub-systems relate to the overall objective. For example, how the enterprise resource planning (ERP), customer relationship management (CRM), and supply chain management (SCM) relate to the plant systems (MES/MOM), process control systems, edge computing devices and smart sensors.


Systems mapping is a technique for identifying and mapping the things within a system to understand how they interconnect and how they influence the greater system behaviour. Many of the traditional tools we use (for example, business process mapping) often do not adequately describe how each part of the process interacts with the system as a whole. This is perhaps why some ERP implementations have a reputation of often creating rigid business processes that inhibit rather than enable the operations.

As process and instrument engineers, we love to think in hierarchies. Many process control models are described in layers, e.g. the bottom layer is the field level/device layer, above that direct control, then supervisory control, then production control, and finally at the top, scheduling. I still believe that hierarchies play an important role in analysing and breaking down complex manufacturing systems. However, I would also motivate that in the future, a new set of tools and models will become just as, if not more, important. Systems thinking introduces a number of useful concepts, such as trending, causal loop diagrams, connected circles and more. It might be worth reading up on the subject if these are new concepts to you.

Many of us have suffered ‘death by Industry 4.0’ over the past few years. The hype has been amplified by vendors offering solutions, ‘digital transformation’ consultants, industry analysts and others. However, underpinning many smart manufacturing concepts (and the intelligent plant) are some fundamental shifts from linear systems towards interconnected networks. Systems thinking can provide the necessary techniques for understanding why these shifts are significant and give insight about how to incorporate the power of interconnected systems in your business.

About Gavin Halse

Gavin Halse is a chemical process engineer who has been involved in the manufacturing sector sincemid-1980. He founded a software business in 1999 which grew to develop specialised applications formining, energy and process manufacturing in several countries. Gavin is most interested in the effective use of IT in industrial environments and now consults part-time to manufacturing and software companiesaround the effective use of IT to achieve business results.

For more information contact Gavin Halse, Absolute Perspectives, +27 83 274 7180,,


Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Machine learning optimizes real-time inspection of instant noodle packaging
April 2021, Beckhoff Automation , IT in Manufacturing
The basis for an inspection of products is classifiers, the use of which enables flawless products to be distinguished from faulty ones.

Industrial Machine Learning – it’s AI, just less artificial
May 2021, Iritron , IT in Manufacturing
Machine Learning is gaining popularity in the manufacturing industry as tools become easier to use and more cost effective.

Industrial Machine Learning – it’s AI, just less artificial
March 2021, Iritron , IT in Manufacturing
Machine Learning is gaining popularity in the manufacturing industry as tools become easier to use and more cost effective.

Emerson introduces Digital Maturity Quick Index
April 2021, Emerson Automation Solutions , IT in Manufacturing
Resource helps companies self-assess operations and identify opportunities for the highest potential return on investment.

Industrial Machine Learning – it’s AI, just less artificial – Part 1: What is Machine Learning and what makes Industrial Machine Learning different?
April 2021, Iritron , IT in Manufacturing
Machine Learning is gaining popularity in the manufacturing industry as tools become easier to use and more cost effective.

What is the current state of additive manufacturing?
March 2021 , IT in Manufacturing
The technology and science of additive manufacturing continue to advance.

AI and BPM for process innovation
March 2021 , IT in Manufacturing
Innovative businesses are deploying new business models, through standardised processes which deliver superior value for customers, employees and stakeholders.

New opportunities bring new threats
March 2021, RJ Connect , IT in Manufacturing
With greater connectivity comes greater exposure to cyber threats. So how do we keep the world’s critical infrastructure and manufacturing environments safe from cyberattacks?

Jumo technology for the digital age
May 2021, ASSTech Process Electronics + Instrumentation , IT in Manufacturing
Automation 4.0 with the Jumo Cloud and JUMO smartWARE scada.

Expert advice for a stress-free digital transformation journey
May 2021, Yokogawa South Africa , IT in Manufacturing
The journey begins with a digital roadmap, which is a strategic plan to bring change to the company. It is all-encompassing in the organisation and goes beyond technology, IT and OT.”