IT in Manufacturing


Applying systems thinking to smart plants

April 2021 IT in Manufacturing

When we think about smart plants, we see an image of interconnected networks of smart devices capable of sensing the environment, understanding and predicting trends, and responding intelligently. Analysts often describe the smart plant in terms of the enabling technology – for example, the IIoT (Industrial Internet of Things), industrial Wi-Fi/5G, artificial intelligence, predictive analytics, cloud computing and more. It is probably fair to say that the technology choices for embedding ‘intelligence’ into a manufacturing plant are still far ahead of the number of real-world practical applications, at least for now.

As engineers and technicians, we tend to analyse systems by breaking them down into their constituent parts. In this way, we believe that to simplify complex systems all we need is to understand each component’s function. While this type of analysis can be useful, other techniques can result in better insights, particularly when the components are interconnected as in a smart plant. In this article, I would like to introduce systems thinking and explain why it is a valuable technique to understand smart plants.

Understanding complex systems

Systems thinking is not a new concept. It has been applied to the understanding of complex, interrelated biological systems for many years. It also happens to be ideal for understanding complex, interrelated systems, such as a manufacturing company. Systems thinking sees all things as interconnected at some level, and through this, something more significant emerges.

A systems thinking approach will avoid breaking down complexity into individual components. Instead, it considers the system as a whole, as a complex network of many interconnected elements. For example, a manufacturing plant is not something that operates in isolation. It is but one part of the value chain of a business, which is, in turn, a part of the wider supply chain network, which in turn forms part of a manufacturing cluster or ecosystem, and ultimately operates within the economy as a whole. Each piece of the network has a role to play and is connected to the other parts. While each piece has its objective, the system as a whole also has an objective.

Some of the terminology used in systems thinking is important. Within a system, the individual parts combine to ‘synthesise’ something new. Thus, an interconnected network’s effect is to create something more significant than the sum of the individual components. The result of this synthesis is the ‘emergence’ of new outcomes. In our example, the network of sensors on the plant will synthesise information that will allow the plant to respond to changes from the supply chain network. More customised products might emerge from this system.

The interconnected nature of a system means that there are also dependencies between the parts and the information flows between them, creating ‘feedback loops’. These loops have the result of either correcting and balancing the system, or reinforcing something desirable. The feedback loops could be local within intelligent devices or software, or in the decisions of a controller in the control room. Or they could be across the supply chain, such as demand planning and production scheduling. The coexistence of human and machine elements in these feedback loops is an important consideration.

Finally, ‘causality’ in systems thinking is an understanding of how the individual things in a system influence each other. Understanding this cause-and-effect relationship will allow a deeper understanding of the overall dependencies, and which feedback loops matter most within a system.

Systems thinking is an excellent conceptual tool for understanding how the smart plant will work in the future. It also provides a framework for viewing the physical plant as part of its network’s broader activity. When you view a business as a system, it becomes possible to analyse how the individual plant and business sub-systems relate to the overall objective. For example, how the enterprise resource planning (ERP), customer relationship management (CRM), and supply chain management (SCM) relate to the plant systems (MES/MOM), process control systems, edge computing devices and smart sensors.

Mapping

Systems mapping is a technique for identifying and mapping the things within a system to understand how they interconnect and how they influence the greater system behaviour. Many of the traditional tools we use (for example, business process mapping) often do not adequately describe how each part of the process interacts with the system as a whole. This is perhaps why some ERP implementations have a reputation of often creating rigid business processes that inhibit rather than enable the operations.

As process and instrument engineers, we love to think in hierarchies. Many process control models are described in layers, e.g. the bottom layer is the field level/device layer, above that direct control, then supervisory control, then production control, and finally at the top, scheduling. I still believe that hierarchies play an important role in analysing and breaking down complex manufacturing systems. However, I would also motivate that in the future, a new set of tools and models will become just as, if not more, important. Systems thinking introduces a number of useful concepts, such as trending, causal loop diagrams, connected circles and more. It might be worth reading up on the subject if these are new concepts to you.

Many of us have suffered ‘death by Industry 4.0’ over the past few years. The hype has been amplified by vendors offering solutions, ‘digital transformation’ consultants, industry analysts and others. However, underpinning many smart manufacturing concepts (and the intelligent plant) are some fundamental shifts from linear systems towards interconnected networks. Systems thinking can provide the necessary techniques for understanding why these shifts are significant and give insight about how to incorporate the power of interconnected systems in your business.


About Gavin Halse


Gavin Halse is a chemical process engineer who has been involved in the manufacturing sector sincemid-1980. He founded a software business in 1999 which grew to develop specialised applications formining, energy and process manufacturing in several countries. Gavin is most interested in the effective use of IT in industrial environments and now consults part-time to manufacturing and software companiesaround the effective use of IT to achieve business results.

For more information contact Gavin Halse, Absolute Perspectives, +27 83 274 7180, [email protected], www.absoluteperspectives.com




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Prefabricated data centres for an AI-focused future at the edge
Schneider Electric South Africa IT in Manufacturing
As AI technologies continue to advance, data centres are being pushed to the edge, reshaping their operations to meet daily demands. To meet the relentless demands of AI workloads at the edge, prefabricated data centre solutions offer a scalable, efficient and fast alternative to traditional builds.

Read more...
Quantum computing and its impact on data security: a double-edged sword for the digital age
IT in Manufacturing
Quantum computing is poised to redefine the boundaries of data security, offering groundbreaking solutions while threatening modern encryption’s foundations. For third-party IT providers, this duality presents both a challenge and an opportunity to lead organisations through one of the most significant technological transitions in decades.

Read more...
Next-generation road-legal race car.
Siemens South Africa IT in Manufacturing
Siemens Digital Industries Software has announced that Briggs Automotive Company (BAC) will move to the Siemens Xcelerator portfolio of industry software and use it to develop the next generation of its single-seater road-legal race car, Mono.

Read more...
Cybersecurity at a crossroads
IT in Manufacturing
here’s a growing unease in boardrooms, data centres and cabinet offices across South Africa. It’s not just about economic headwinds or political uncertainty, it’s about something quieter, more technical and yet just as dangerous - the rising tide of cyber threats.

Read more...
Enabling a sustainable industrial organisation
IT in Manufacturing
This article explains the top sustainability trends and key actions that you can leverage to become a more sustainable organisation.

Read more...
Navigating discrete manufacturing in South Africa through digitalisation
IT in Manufacturing
South Africa’s discrete manufacturing sector faces mounting pressure from global competition, fragmented supply chains and outdated infrastructure. In this complex environment, digitalisation is a critical lever for survival, resilience and growth.

Read more...
Africa’s pragmatic approach to AI and how data centres are enabling it
Schneider Electric South Africa IT in Manufacturing
In Africa, the current AI momentum is driven by a fundamental need, building a resilient digital infrastructure that addresses the real-world challenges of the continent’s communities.

Read more...
World first simulation of error-correctable quantum computers
IT in Manufacturing
Quantum computers still face a major hurdle on their pathway to practical use cases, their limited ability to correct the arising computational errors. In a world first, researchers from Chalmers University of Technology in Sweden have unveiled a method for simulating specific types of error-corrected quantum computations.

Read more...
Platform to accelerate supply chain decarbonisation
Schneider Electric South Africa IT in Manufacturing
Schneider Electric has launched Zeigo Hub by Schneider Electric, a powerful new digital platform designed to help organisations decarbonise their supply chains at scale.

Read more...
Future-ready data centres
IT in Manufacturing
The white paper ‘Future-Ready Data Centres’ by Black & Veatch outlines how integrating sustainable design principles not only helps meet ESG goals but also ensures reliability, operational efficiency and business continuity in the face of climate change and growing digital demand.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved