Motion Control & Drives


Low-friction bearings for EV drivetrains

2 May 2020 Motion Control & Drives

Bearings, although buried deep within the vehicle, are on the front line in contributing to drivetrain efficiencies and delivering reliability for automotive manufacturers.

Breakthroughs in technologies such as batteries, power management electronics and electric motors have paved the way for the dramatic emergence of electric mobility, but every aspect of the EV (electric vehicle) drivetrain is being advanced in the push for efficiency and reliability.

In particular, EV drivetrains are placing new demands on components such as bearings. The push for efficiency throughout the drivetrain is prompting original equipment manufacturers to explore new low-friction approaches rather than the conventional tapered roller bearings that are found in gearboxes and differentials.

Another challenge is the high speed of the electric motors in EVs (up to 30 000 rpm speeds), far higher than those found in most industrial applications, are needed to ensure the drivetrain works efficiently. The speed, acceleration and temperatures generated by these machines place enormous strain on bearings and their components such as cages and rolling elements.

Bearings running at such high speeds also need effective lubrication and cooling. Without this, there is a high risk of rapid degradation of the bearing components. Both races and rollers may overheat, causing premature failure and the need for early replacement.

In addition to high rotational speeds, electric motors can also present further challenges for bearings through electrical discharges. High-frequency voltage switching of the motor inverter can result in current leakage. This current can be conducted through the bearings, causing arcs in the rolling contacts, and may result in surface fatigue and erosion.

Manufacturers are also developing special lubricants with lower viscosity and special additives in order to reduce power losses from friction and support operation at far higher speeds. However, lower viscosity lubrication can also have an impact on the wear and fatigue characteristics of bearings. Accelerated wear can result in catastrophic failure, having an obvious impact on reliability.

Solving the challenge of EV bearings

a response to these new demands, manufacturers such as SKF are investing in new technological developments and adapting or redesigning conventional bearings. By redesigning elements such as the polymer cage, rolling components and using special lubricating grease for example, customised and hybrid bearings are already solving some of the fundamental issues that can affect reliability in electric vehicles.

In terms of electrical discharge, ceramic ball bearings are currently the most attractive solution given that ceramics are typically electrically insulating materials.

While using ceramic rolling elements to create a so-called hybrid bearing resolves this issue, there are other associated benefits too. For instance, having roughly half the density of their steel equivalents, ceramics are lighter and therefore tend to run at lower temperatures. In addition, ceramic bearings are much harder than steel so last up to ten times longer, typically requiring less lubrication.

Although currently only around 5% of bearings in EV applications are hybrids featuring ceramic elements, this is beginning to change. The value that hybrid units offer in reliability and extended service life is becoming increasingly recognised and acknowledged.

Another solution that is being explored is carbon nitride bearing raceways for applications where bearings are exposed to contamination or poor lubricants. Carbonitriding increases the surface hardness and consequently, as with ceramics, increases the in-service lifetime. As the global EV market continues to expand, many more advanced ways of dealing with all the specific conditions required for EVs are also under development. These include special greases that maintain a stable viscosity at higher speeds and temperatures.

Bearings rolling out EV market growth

According to an International Energy Agency analysis published in 2019, the global EV fleet is now well above 5 million vehicles. A study from market research company Frost and Sullivan stated that the volume of global sales almost doubled in a single year (from 2017 to 2018) and China remains the world’s largest electric car market. This segment is expected to continue to dominate the market.

Given the new constraints linked to EV technology development, the bearing contribution to the overall system behaviours should not be underestimated. Manufacturers such as SKF are determined to ensure that bearings are fit for the future with improvements in performance, efficiency and reliability.

For more information contact Samantha Joubert, SKF South Africa, +27 11 821 3500, samantha.joubert@skf.com, www.skf.com


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Parker’s SCFF couplings avoid loss of fluid and help protect the environment
January 2021, Parker Hannifin - Sales Company South Africa , Motion Control & Drives
These couplings offer users a number of benefits ranging from low-leakage decoupling to the avoidance of air entrapment during coupling.

Read more...
Machine health monitoring
January 2021, SKF South Africa , Maintenance, Test & Measurement, Calibration
The SKF Enlight Collect monitoring system combines SKF’s knowledge in machine health monitoring with LumenRadio’s patented network technology.

Read more...
BMG efficiency in cooling towers
January 2021, Bearing Man Group t/a BMG , Motion Control & Drives
New to the Hansen range of gear units for dry and wet cooling towers is the recently launched M5CT range of right-angle vertical gearboxes, which have been further developed for cooling technology.

Read more...
Drive configuration made easy
November 2020, Nidec Control Techniques , Motion Control & Drives
Nidec Control Techniques prides itself on offering free software for commissioning, optimising and monitoring drive/system performance.

Read more...
Sinumerik One Dynamics for motion control
November 2020, Siemens Digital Industries , Motion Control & Drives
Siemens has launched three powerful technology packages exclusively for the CNC Sinumerik One.

Read more...
Heavy-duty wedge belts
November 2020, Bearing Man Group t/a BMG , Motion Control & Drives
Fenner Quattro Plus Twin Wrap wedge belts transmit 30% more power than conventional belts.

Read more...
30 years of linear motion technology
November 2020 , Motion Control & Drives
This year, factory automation specialist Bosch Rexroth celebrates 30 years of linear motion technology and innovation.

Read more...
Cooling VSDs with inertial spin filters
November 2020, RTS Africa Technologies , Motion Control & Drives
RTS inertial spin filter units are compact and easy to install and RTS Africa offers full service from conceptual design to ongoing support as required.

Read more...
Omron launches HD-1500 mobile robot
November 2020, Omron Electronics , Motion Control & Drives
Industry-leading HD-1500 expands the possibilities for autonomous material transport.

Read more...
BMG installs Danfoss VSDs to improve energy efficiency on farms
November 2020, Danfoss , Motion Control & Drives
BMG’s Boer Slim/Smart Farming agricultural team works closely with farmers, assisting them with the selection and operation of new electromechanical systems.

Read more...