Temperature Measurement


Infrared thermography revolutionises hot-mix asphalt paving

June 2007 Temperature Measurement

Hot-mix asphalt (HMA) surfaces comprise a high percentage of our highways and roads and are typically engineered to last 15 years or more, but many have suffered premature failure due to potholes, cracks, ravelling and other problems. These failures waste millions of taxpayers' rands every year.

A series of research studies have been conducted in the USA to determine the reason for the premature failure of HMA paved roads. The field studies used infrared thermography and site evaluations to determine the results. Study results confirmed that a major cause of early failure stems from temperature differentials in the hot-mix during laydown.

The first link between pre-compacted surface temperature and HMA density was verified in 1996 when studies were done to investigate 'cyclic segregation' or 'end of load segregation'. These studies confirmed that the clumps of crusted material that went through the paving machine without substantial remixing during end dump operations were relatively cooler than the bulk of the material and therefore stiffer and more resistant to compaction. As a result these areas were relatively porous and filled with air voids, less dense, and less resistant to wear and degradation from traffic and the environment than the surrounding matrix. The study concluded that placement of this cooler hot-mix can create areas near or below cessation temperature (79°C), which tend to resist adequate compaction. Even after aggressive rolling, the isolated cool areas have lower densities, and more air voids, than the surrounding material.

Asphalt that is cooler than 79°C is relatively stiff, and resists compaction, which results in a lower density than hotter areas after compaction, and is therefore prone to premature failure. Note the low temperature spots in the thermograph, which is cooler than 67,2°C and correlate with the visibly worn dark spots in the visual photo of the road after about a year of service
Asphalt that is cooler than 79°C is relatively stiff, and resists compaction, which results in a lower density than hotter areas after compaction, and is therefore prone to premature failure. Note the low temperature spots in the thermograph, which is cooler than 67,2°C and correlate with the visibly worn dark spots in the visual photo of the road after about a year of service

In 1998 an infrared thermal imager was used in studies to correlate temperature difference, aggregate segregation and compacted densities. The relatively cooler areas were found to have lower densities than the hotter areas, with an overall air void difference of 1,6 to 7,8%. From this study it was concluded that isolated areas of low density were related to temperature differentials and not to aggregate segregation.

Temperature differential damage occurs when a truck load of HMA exhibiting temperature differentials is dumped into the paver’s hopper. HMA cools along the top and sides of the truck bed. The cool material then falls inward to lay on top of the material over the slat conveyors. When the next truck arrives and dumps into the paver, this cooler material is extruded onto the roadway. This cooler material is placed on the mat in isolated areas and compaction equipment is unable to adequately consolidate these areas of cooler mix.

In 1999 investigations were made using a thermal imager and in-place nuclear density testing. The primary objective of the study was to determine the relationship between temperature differentials within the hot-mix and its final density. As expected, higher differentials resulted when there was no remixing prior to placement of the hot-mix and typically after long haul times. The pivotal finding was that localised air voids typically increased by 2% or more when the temperature differential was 14°C or larger.

A landmark quantitative finding of a 2000 study was the determination of a critical thermal differential threshold of 13,9°C within the hot-mix as it was extruded from the paver. The cooler areas or hot-mix with a higher differential of 13,9°C exhibited significantly lower densities after compaction than the hotter matrix.



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Bimetal thermometer with switch contacts
December 2019, WIKA Instruments , Temperature Measurement
WIKA’s model TGS55 is a stainless steel bimetal thermometer which offers high reliability and long service life. Wherever the process temperature has to be indicated on-site and, at the same time, circuits ...

Read more...
Infrared monitoring of kiln shells extends refractory life
December 2019 , Temperature Measurement
Extending the life of a kiln refractory as well as preventing disastrous failures requires a good understanding of the condition of the refractory material.

Read more...
Thermocouples in gasification reactors
November 2019, WIKA Instruments , Temperature Measurement
Gasification reactors, due to their harsh process conditions, place high demands on the instruments used there. Many manufacturers have reacted to this and adapted their products accordingly, but what ...

Read more...
Thermal profiling can prevent business disasters
November 2019, R&C Instrumentation , Temperature Measurement
Thermal profiling is the term used to describe the process of recording and interpreting the temperatures of products and air as they move through a heat treatment process. In the food, beverage ...

Read more...
Hotspot detection in pressboard manufacturing applications
October 2019, R&C Instrumentation , Temperature Measurement
In the building industry, there is a product used that is commonly referred to as pressboard, also known as chipboard. Sheets of pressboard are typically 1,2 m x 2,4 m in size and are used in the construction ...

Read more...
Pair temperature probes with different cable lengths
October 2019, ASSTech Process Electronics + Instrumentation , Temperature Measurement
In heat meters for heating systems, two paired temperature probes are usually used for symmetrical installation. These must have identical cable lengths to comply with the legal regulations. Now, Jumo ...

Read more...
Vibration measurement in machine maintenance
October 2019, R&C Instrumentation , Maintenance, Test & Measurement, Calibration
Vibration and temperature are the most common parameters measured on process plants for machine maintenance. Temperature measurement has been around for longer, probably because it was available first ...

Read more...
IR thermometers in the steel industry
September 2019, R&C Instrumentation , Temperature Measurement
In many foundry applications, temperature readings show whether processes are operating within their proper ranges, whether a reheater is too cold or too hot, whether a stand needs adjusting, or how much ...

Read more...
Ten facts about infrared windows
September 2019, R&C Instrumentation , Maintenance, Test & Measurement, Calibration
Infrared (IR) inspection is widely used and quickly becoming indispensable in electrical maintenance programmes. With the advent of IR windows, this procedure is now both safe and cost-effective. However, ...

Read more...
Compact IR camera with industrial accessories
September 2019, Comtest , Temperature Measurement
Comtest has announced an addition to the Optris Compact line of IR cameras – Xi 80 and Xi 400 – with new industrial accessories for use in harsh conditions. The range has a modular design and as a result, ...

Read more...