Electrical Power & Protection


Are you in the clear?

June 2012 Electrical Power & Protection

Corporate South Africa is moving more and more in the direction of good corporate governance. In the recent past, the King III Report provided a framework whereby company directors are obliged to ensure governance is maintained at a level whereby key stakeholders such as shareholders, bondholders, employees and various other interested parties are protected against poor company control measures that can result in a disastrous outcome.

Forming a key part of this report, and indeed in any corporate governance strategy, is the mitigation of risk through effective management. When outlining a risk management strategy, identification of key assets that require risk protection is an area that needs considerable attention. Such assets usually include electrical reticulation systems that include substations and transformers or information storage and communications systems. Should an event cause a significant power outage, this can lead to major business downtime or if sensitive data gets lost this can be catastrophic in terms of business privacy and records. Other key infrastructure that should be included in any risk mitigation strategy would be key processing equipment that directly influences the output of a business, such as production equipment that could include conveyors, manufacturing equipment and vehicles.

The effects of fire can be devastating not only to businesses but indeed to human life too. Should a fire occur it can render serious damage in terms of business profits as well as unnecessary recapitalisation and litigation in the event of injury or loss of life. Insurance companies recognise this and usually require the implementation of fire protection systems before they will provide risk cover.

When seeking out a best solution in terms of fire protection a proper risk analysis should be done. A Weighted Risk Assessment Criteria (WRAC) is an example of a risk management tool that evaluates the risk areas by analysing the likelihood of occurrence and the possible outcomes and consequences.

The table shows how to place sources of risk against probability and consequence. An example could be an electrical fire occurring in a building’s Eskom Feed Substation Room. Such an event would be placed under occasional with the consequence being catastrophic. The primary cause of all substation fires lies in the high energy electrical switchgear. Typically a fire occurs in the cable termination compartment where the cable connection becomes increasingly hot to a point where it ignites. If this occurs a series of events could happen, for example the fire itself would destroy this room and possibly those surrounding. Typically an Eskom Feed Substation is placed in the underground parking basement with other potential fire sources – an oil filled transformer, diesel backup generators, cars that have rubber tyres and petrol in the fuel tanks etc. Should a fire occur on this piece of equipment, it would place this risk in the Unacceptable High Category that is designated as RED in the 1.4 box.

By implementing a fire detection and fire extinguishing system would reduce the risk profile to the GREEN 3.2 where the consequence would be marginal Moderate Low level. However, what is also crucial to factor in is the type of fire protection system used.

For example, should a building have a tenant that has a large paper archive room and a water sprinkler system was installed this would reduce the risk of fire damage but would introduce the factor of extensive water damage to the very documents that are intended for protection. Therefore the research into the selection of a fire protection system is crucial. In terms of a paper archive, an inert gaseous fire extinguishing system would be appropriate.

Other examples would be in a server room where gaseous extinguishing systems are typically used. The hazardous by-products of some gaseous extinguishing systems can have toxic and corrosive side effects on servers, networking devices and hard drives. The hydrofluorocarbon gases used in some types of extinguishing systems break-down into hydrogen fluoride, hydrofluoric acid is devastating on some materials. It is not surprising that the market trends have moved towards inert gas blend type extinguishing systems where there are no hazardous by-products associated because they typically constitute a blend of nitrogen and argon that are found in the air.

Fire detection devices should also be appropriate for the application. The most common fire detector is a point type optical smoke detector. However such detectors can only detect fires when the fire reaches a certain stage. Namely that there is prescribed level of smoke concentration before the detector activates. This is perfectly suitable for most applications and provides an excellent budget friendly option, but for specific applications this response time may be too late as sensitive equipment is already on fire and has begun affecting other equipment. Therefore other types of fire detectors should be considered in order to detect fire earlier and thereby reduce the risk level down to at least a moderate low level as shown on the WRAC table. An example could be in any room or area that has electrical cable runs, servers, building ducting etc.

Therefore users of risk analysis tools should go one step further in considering the effects of using certain fire protection systems and the possible side effects they could have on the very assets they are intending to protect. The type of fire protection system should be factored into the risk model itself. It is therefore very important that risk managers consult qualified engineering professionals who specialise in the field of fire protection engineering.

For more information contact Grant Wilkinson, Alien Systems & Technologies, +27 (0)11 949 1157, [email protected], www.astafrica.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Hitachi Energy’s power quality solution
Electrical Power & Protection
Hitachi Energy has announced the deployment of its power quality solution to connect Tanzania’s leading gold producer, Geita Gold Mine (GGML) securely to the national grid.

Read more...
Rail electrification and EV solutions for integrated transport systems
Electrical Power & Protection
A comprehensive range of solutions for rail electrification and electric vehicles is available from leading technology provider ABB, contributing significantly to integrated and sustainable transport systems.

Read more...
PPS delivers containerised distribution board for Western Cape hybrid power project
Electrical Power & Protection
South African electrical enclosure specialist Power Process Systems has successfully completed the design, fabrication and commissioning of a 4000 A containerised distribution board for a wind/PV solar hybrid renewable energy project on a site in the Western Cape.

Read more...
The choice of a thermal carrier is critical for optimal processing
Electrical Power & Protection
Historically steam, fuelled by coal, has been the most prevalent thermal carrier in South African industry. However, times are changing, with the manufacturing and processing sector needing to review the energy reticulation systems and thermal carriers currently in use.

Read more...
ABB’s blueprint for a net zero future
Electrical Power & Protection
ABB’s Mission to Zero is a strategic initiative aimed at achieving a sustainable future characterised by zero emissions, zero accidents and zero waste.

Read more...
How South Africa’s transformer manufacturing industry can fill a gaping infrastructure gap
ACTOM Electrical Machines Electrical Power & Protection
South Africa’s energy transition is accelerating the demand for power transformers. However, this shift toward renewable energy is exposing a critical infrastructure gap: a severe shortage of transformers.

Read more...
General-purpose 350 W AC-DC power supply
Electrical Power & Protection
The TDK-Lambda GUS350 series of compact single-output general-purpose power supplies addresses the need for an economically priced product while maintaining reliability and quality.

Read more...
Ground-breaking battery tester
Comtest Electrical Power & Protection
Midtronics offers the proven MVT handheld battery tester. This revolutionary tool, powered by MDX-AI, is set to redefine the standards of battery diagnostics and testing in the automotive industry.

Read more...
Green hydrogen could be the missing link in powering the future of technology
Electrical Power & Protection
Green hydrogen has numerous applications across multiple industries. It also has the potential to provide a clean energy source to power future technology, with far-reaching implications for both industry and society.

Read more...
Energy audits pave the pathway to sustainability and savings
Schneider Electric South Africa Electrical Power & Protection
Energy audits serve as essential tools for businesses looking to reduce costs and meet environmental targets. By analysing energy consumption across systems such as lighting, HVAC, ICT and water infrastructure, audits identify inefficiencies and quantify carbon footprints, enabling data-driven decisions for operational and financial optimisation.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved