IT in Manufacturing


So, what’s left for us humans after the machines take over?

Technews Industry Guide: Industrial Internet of Things & Industry 4.0 IT in Manufacturing

One of the questions that we at the International Data Corporation are asked is what impact technologies like Artificial Intelligence (AI) will have on jobs. Where are there likely to be job opportunities in the future? Which jobs (or job functions) are most ripe for automation? What sectors are likely to be impacted first? The problem with these questions is that they misunderstand the size of the barriers in the way of system-wide automation. The question isn’t only about what is technically feasible; it is just as much a question of what is legally, ethically, financially and politically possible.

That said, there are some guidelines that can be put in place. An obvious career path exists in being ‘on the other side of the code’, as it were – being the one who writes the code, who trains the machine, who cleans the data. But no serious commentator can leave the discussion there, as too many people are simply not able or have no desire to code. Put another way, where do the legal, financial, ethical, political and technical constraints on AI leave the most opportunity?

AI is getting better but there are constraints

Firstly, AI (driven by machine learning techniques) is getting better at accomplishing a whole range of things – from recognising (and even creating) images, to processing and communicating natural language, completing forms and automating processes, fighting parking tickets, being better than the best Dota 2 players in the world, and aiding in diagnosing diseases. Machines are exceptionally good at completing tasks in a repeatable manner, given enough data and/or enough training. Adding more tasks or attempting system-wide automation requires more data and more training. This creates two constraints on the ability of machines to perform work:

1. Machine learning requires large amounts of (quality) data.

2. Training machines requires time and effort (and therefore cost).

Let’s look at each of these in turn – and we’ll discuss how other considerations come into play along the way.

Speaking in the broadest possible terms, machines require large amounts of data to be trained to a level to meet or exceed human performance in a given task. This data enables the bot to learn how best to perform that task. Essentially, the data pool determines the output.

However, there are certain job categories which require knowledge of, and then subversion of, the data set – jobs where producing the same ‘best’ outcome would not be optimal. Particularly, these are jobs that are typically referred to as creative pursuits – design, brand, look and feel. To use a simple example: if pre-Apple, we trained a machine to design a computer, we would not have arrived at the iMac, and the look and feel of iOS would not have become the predominant mobile interface.

This is not to say that machines cannot create things. We’ve recently seen several ML-trained machines on the Internet that produce pictures of people (that don’t exist) – that is undoubtedly creation (of a particularly unnerving variety). The same is true of the AI that can produce music. But those models are trained to produce more of what we recognise as good. Because art is no science, a machine would likely have no better chance of producing a masterpiece than a human. And true innovation, in many instances, requires subverting the data set, not conforming to it.

Secondly, and perhaps more importantly, training AI requires time and money. Some actions are simply too expensive to automate. These tasks are either incredibly specialised, and therefore do not have enough data to support the development of a model, or very broad, which would require so much data that it will render the training of the machine economically unviable. There are also other challenges which may arise. At the IDC, we refer to the Scope of AI-Based Automation. Within this scope:

• A task is the smallest possible unit of work performed on behalf of an activity.

• An activity is a collection of related tasks to be completed to achieve the objective.

• A process is a series of related activities that produce a specific output.

• A system (or an ecosystem) is a set of connected processes.

A practical example of constraints in action

As we move up the stack from task to system, we find different obstacles. Let’s use the medical industry as an example to show how these constraints interact. Medical image interpretation bots – powered by neural networks – exhibit exceptionally high levels of accuracy in interpreting medical images. This is used to inform decisions which are ultimately made by a human – an outcome that is dictated by regulation. Here, even if we removed the regulation, those machines cannot automate the entire process of treating the patient. Activity reminders (such as when a patient should return for a check-up, or reminders to follow a drug schedule) can in part be automated, with ML applications checking patient past adherence patterns, but with ultimate decision-making by a doctor.

Diagnosis and treatment are processes that are ultimately still the purview of humans. Doctors are expected to synthesise information from a variety of sources – from image interpretation machines to the patient’s adherence to the drug schedule – in order to deliver a diagnosis. There are ethical, legal and trust reasons that dictate this outcome.

There is also an economic reason. The investment required to train a bot to synthesise all the required data for proper diagnosis and treatment is considerable. On the other end of the spectrum, when a patient’s circumstance requires a largely new, highly specialised or experimental surgery, a bot will unlikely have the data required to be sufficiently trained to perform the operation and even then, it would certainly require human oversight.

The economic point is a particularly important one. To automate the activity in a mine, for example, would require massive investment into what would conceivably be an army of robots. While this may be technically feasible, the costs of such automation likely outweigh the benefits, with replacement costs of robots running into the billions. As such, these jobs are unlikely to disappear in the medium term.

Conclusion

Thus, based on technical feasibility alone, our medium-term jobs market seems to hold opportunity in the following areas: the hyper-specialised (for whom not enough data exists to automate), the jack-of-all-trades (for whom the data set is too large to economically automate), the true creative (who exists to subvert the data set) and finally, those whose job it is to use the data. However, it is not only technical feasibility that we should consider. Too often, the rhetoric would have you believe that the only thing stopping large scale automation is the sophistication of the models we have at our disposal, when in fact financial, regulatory, ethical, legal and political barriers are of equal, if not greater, importance. Understanding the interplay of each of these for a role in a company is the only way to divine the future of that role.

For more information contact International Data Corporation South Africa, +27 11 517 3240, irenevb@mcdsquared.co.za, www.idc.com





Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

AI-powered maintenance in future-ready data centres
Schneider Electric South Africa IT in Manufacturing
The data centre marketplace often still relies on outdated maintenance methods to manage mission-critical equipment. Condition-Based Maintenance (CBM) is powered by AI and is fast becoming a necessity in ensuring both competitiveness and resilience.

Read more...
Powering up data centre mega development
IT in Manufacturing
Parker Hannifin has secured a major contract to supply key equipment for nearly 30 aeroderivative gas turbines powering a new hyperscale data centre in Texas.

Read more...
Building resilient supply chains through smarter e-procurement
RS South Africa IT in Manufacturing
In a time of constant disruption, from supply chain uncertainty to rising operational costs, businesses that embrace digital procurement are better positioned to stay competitive and resilient.

Read more...
The new 2026 Eplan Platform
IT in Manufacturing
Eplan has completely redeveloped its entire portfolio, with an even greater focus on customers and their requirements in their respective market segments. One central point is the significant reduction in complexity.

Read more...
Africa’s data centre ecosystem needs robust data protection strategies
IT in Manufacturing
As Africa accelerates its digital transformation, local data centres are becoming critical enablers that bring cloud services closer to users, reduce latency and support compliance with data sovereignty laws. Along with this, data protection has moved from the bottom of the IT budget to the top of the strategic agenda.

Read more...
Machine health monitoring with ifm
ifm - South Africa Editor's Choice IT in Manufacturing
With ifm’s machine health monitoring, early signs of wear can be detected and unexpected failures prevented. Combined with equipment preventive maintenance software, interventions can be scheduled proactively to avoid costly downtime.

Read more...
AI adoption in South Africa focuses on AI ethics and privacy measures
IT in Manufacturing
South African organisations are integrating AI technologies with a deliberate, privacy-first mindset, creating sustainable frameworks for digital transformation and regulatory compliance

Read more...
Data centres face a cooling crisis as AI demand surges
IT in Manufacturing
Artificial intelligence is advancing not only industries but also the physical infrastructure that powers the digital economy. As AI workloads drive unprecedented power densities, cooling shifts from a supporting role to a frontline constraint.

Read more...
Platform for integrated digital mine management
IT in Manufacturing
Becker Mining launches platform for integrated digital mine management

Read more...
The reimagined building of today and tomorrow
Schneider Electric South Africa IT in Manufacturing
Retrofitting a building is a truly practical way of achieving energy efficiency, compliance and long-term competitiveness.

Read more...









While every effort has been made to ensure the accuracy of the information contained herein, the publisher and its agents cannot be held responsible for any errors contained, or any loss incurred as a result. Articles published do not necessarily reflect the views of the publishers. The editor reserves the right to alter or cut copy. Articles submitted are deemed to have been cleared for publication. Advertisements and company contact details are published as provided by the advertiser. Technews Publishing (Pty) Ltd cannot be held responsible for the accuracy or veracity of supplied material.




© Technews Publishing (Pty) Ltd | All Rights Reserved