IS & Ex


How to calculate an intrinsically safe loop approval

September 2017 IS & Ex

We all know what can happen if the correct techniques are not used when interfacing into the hazardous area. Using intrinsic safety (Ex i based on IEC/SANS 60079-11; IEC/SANS 60079-25), the energy in the hazardous area is limited to below the ignition energy of the gas present, thereby preventing explosions.

For an explosion, all three of gas/dust, oxygen and source of ignition (spark or heat) need to be present. Intrinsic safety works on the principle of removing the source of ignition. This can be achieved by using a Zener barrier or galvanic isolator.

Zener barrier

A Zener barrier is a simple device where the voltage is limited by a Zener diode and the current by a resistor. A fuse is present to protect the Zener diode as shown in Figure 1. The key to safety is the intrinsically safe earth. Without it, there is no protection. If the input voltage increases above Zener diode voltage, the Zener conducts and the fuse blows, after which the Zener barrier needs to be replaced. In addition, the barrier has a volt drop across it under normal operating conditions, so careful calculation must be done to ensure that there is sufficient voltage at the field device. [Note: using Zener barriers without an IS earth is not safe.]

Figure 1.
Figure 1.

Galvanic isolator

A galvanic isolator is an active device that energy limits without the dependence on the IS earth for safety as shown in Figure 2. It also has the advantage of supplying higher voltage at the hazardous area terminals and allowing longer cable lengths. Isolators have local LED indication and most 4-20 mA isolators transfer Hart communications through the optical isolation.

Figure 2.
Figure 2.

Figure 3 defines Ex i for the various classifications of hazardous zones.

Figure 3.
Figure 3.

Figure 4 shows that the barrier/isolator has [Ex ia] IIC; the square brackets indicate that the device (mounted in a safe area) can have connections to the hazardous area, in this case Ex ia i.e. zone 0 – IIC is the gas group. This transmitter has Ex ia IIC T4, which means it can be located in zone 0 in gas group IIC – T4 is the maximum surface temperature of the device (135°C).

Figure 4.
Figure 4.

The barrier/isolator has maximum output parameters for voltage, current and power (Uo, Io and Po). These are maximum output values under fault conditions (known as safety description or entity parameters). The field device has maximum input parameters (Ui, Ii and Pi), which are the maximum values that can be applied under fault conditions and still be safe. [Note: for a safe loop all three input parameters must be greater than or equal to the corresponding output parameters.

To complete the system loop approval, the electrical energy stored in the cabling needs to be considered. Table A.2 in IEC/SANS 60079-11 lists the maximum cable capacitance against output voltage. In the example shown the maximum electrical stored energy that can be connected to the hazardous area terminals equates to Co = 83 nF and Lo = 4,2 mH. The transmitter has internal capacitance and inductance, so maximum cable capacitance Cc = Co-Ci and maximum inductance Lc = Lo-Li. The cable specification typically gives pF/m and μH/m allowing a calculation of maximum cable length

Based on this assessment, a system certificate or loop approval can be documented. [Note: inserting a barrier or isolator with a non-certified field device is not safe.] Some field devices (see Figure 5) like thermocouples are defined as Simple Apparatus.

Figure 5.
Figure 5.

A simple loop drawing is still required and an assessment of power/maximum surface temperature needs to be completed.

Conclusion

Flameproof (Ex d) offers hazardous area protection for zone 1 and 2 and offers protection for higher voltage (110 VAC, 220 VAC) applications and requires mechanical planning and preparation. For 24 V systems, intrinsic safety offers a simple and flexible solution for zones 0, 1 and 2. Intrinsic safety is the only protection that considers faults of the field wiring and offers live working without the need for a gas clearance certificate. It does require some design and planning to ensure that the system loop analysis is acceptable.

Note: Ex nL has been replaced by Ex ic for zone 2 in the standards. This means intrinsic safety can easily be used in zones 0, 1 and 2 and the wiring can be in the same multi-core cable or trunk. Another advantage of Ex ic is that the safety factor of 1,5 (as shown in Table A.2 of SANS/IEC 60079-11) does not need to be applied to cable parameters allowing for longer cable runs.

For further reading on using IS isolators in Functional Safety (SIL) Process Control loops, please see http://www.instrumentation.co.za/8903a

Part 2 of this article can be found at http://www.instrumentation.co.za/7782a

For more information contact Gary Friend, Extech Safety Systems, +27 (0)11 791 6000, gary@extech.co.za, www.extech.co.za


Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Calibration in hazardous areas
April 2019, QTEK Instrumentation & Calibration Solutions , IS & Ex
This article is an edited version of a Beamex calibration white paper, the original unedited document can be downloaded at https://instrumentation.co.za/papers/J4324.pdf

Read more...
Pump monitoring in hazardous areas
Technews Industry Guide: Maintenance, Reliability & Asset Optimisation 2019, Siemens Digital Industries , IS & Ex
Safety has top priority wherever flammable media are used in industry. This applies in particular to the chemical industry, where flammable liquids are produced, processed and transported by pumps in ...

Read more...
Safety meets security
March 2019, Phoenix Contact , IS & Ex
A common strategy required for the future.

Read more...
Is your building safe from fire?
March 2019, Alien Systems & Technologies , IS & Ex
Correct selection of detectors is vital.

Read more...
Safety exhaust valve for emergency stop
March 2019, Parker Hannifin Sales Company South , IS & Ex
Parker Hannifin has introduced a new safety exhaust valve that rapidly exhausts compressed air in the event of a fault condition or when a machine has an emergency stop. The P33 is designed for two-channel ...

Read more...
Ex-rated instruments for explosive atmospheres
March 2019, R&C Instrumentation , IS & Ex
In many industries, there are certain areas that are classified as hazardous or Ex areas. This is an area that contains, or may contain, combustible substances such as gas, vapour or dust. Typical hazardous ...

Read more...
New generation safety controllers
March 2019, Beckhoff Automation , IS & Ex
TwinSAFE: consistently modular, scalable and distributed safety applications.

Read more...
LSIS obtains Ex rating for HMI range
March 2019, Ana-Digi Systems , IS & Ex
Starting with the iXP2 premium series of HMIs, in the latter half of 2018 LSIS began rolling out the Ex certification for the entire range of these exceptional products. The products carry the rating ...

Read more...
Contact in to contact out over fibre optic cable
February 2019, Omniflex Remote Monitoring Specialists , IS & Ex
The Omniterm FCT and FCR modules provide the ability to send a digital contact signal up to 4 km over a single optical fibre. When the contact on the FCT transmitter module is closed, the relay output ...

Read more...
Zoned approach reduces the complexity of machine safety
January 2019, ASCO , IS & Ex
This article examines a unique approach known as zoned safety, which reduces complexity in the design of redundant pneumatic safety circuits. It explains the advantages of the concept over the traditional ...

Read more...