Electrical Power & Protection


Going underground for energy storage

Technews Industry Guide: Sustainable Manufacturing 2023 Electrical Power & Protection

The idea of using gravity to store energy is not new. Hydro has been a feature of mature electricity grids for decades. While this may be ideal for large-scale storage, it requires very specific geographies and comes with a huge capital cost.

Gravitricity, an Edinburgh-based green engineering startup, is working to make gravity energy storage (GES) a reality.

GES is in principle remarkably simple. When green energy such as solar or wind is plentiful, use it to haul a massive weight to a predetermined height. When it’s limited, release the load to power a generator with the downward gravitational pull. The sheer mass of a gravity battery’s weight, coupled with its incredibly slow descent, generates a huge amount of torque, allowing the system to deliver maximum power almost instantaneously. Gravitricity claims its system can operate for up to 50 years and store energy at half the cost of lithium-ion batteries. Commercial director, Robin Lane says that this technology can cycle rapidly from charge to discharge over many years, without any loss of performance, unlike many other energy storage technologies.

To put it in context, you have to drop 500 tons around 800 metres to generate 1 MWh. “This led Gravitricity inescapably in one direction − underground,” says commercial director, Robin Lane. “By deploying our systems in existing mine shafts, we are able to use weights significantly heavier than anything which could be cost-effectively supported by aboveground structures; and we can drop those weights over longer distances. We are evaluating mine shafts 1000 metres deep, allowing a much greater drop than anything which could realistically be achieved above ground.

“In the future, we plan to build multi-weight systems raising and lowering weights totalling up to 12 000 tonnes in shafts up to 750 metres deep, offering almost 25 MWh of flexible storage. A world of distributed energy generation will require distributed energy storage, so Gravitricity plans to develop systems which can be located at scale anywhere – alongside renewable generation, at the transmission level, in off-grid locations, or in urban centres.”

Gravitricity has successfully trialled its first gravity battery prototype, a 15 metre steel tower suspending a 50 ton iron weight. Electric motors slowly hoist the massive metal box skyward before gradually releasing it back to earth, powering a series of electric generators with the downward drag. The company’s focus is now below ground. Engineers have been scoping out decommissioned coal mines in Britain, Eastern Europe, South Africa and Chile.

Gravitricity is working with Dutch winch and offshore manufacturer, Huisman Equipment to develop a prototype system, and with Czech company, Nano Energies to establish commercial routes to market for GES. To this end, it has signed a memorandum of understanding with Czech State-owned mining enterprise Diamo to transform the former Darkov deep-level coal mine in the country into a 4 MW energy storage facility by lowering and raising a single massive weight suspended in the mine shaft.

Lane says there is vast potential for GES in South Africa to use decommissioned mine shafts beyond their useful lives, instead of having to break down infrastructure and rehabilitate the area. Of particular interest to Gravitricity are the country’s deep level mines.

Public relations manager, Simon Farnan tells SA Instrumentation & Control that the company identified over 30 deep shafts suitable for early projects, and signed MoUs with South African companies UMS Mining Group and RESA. “We are still considering development opportunities in South Africa, and are actively pursuing innovation grants that would help support further research opportunities with our study partners,” he says.

However, before Gravitricity can partner with mining companies in South Africa, it has to validate the capabilities and performance metrics of its technology through the scaled-up system in the Czech Republic, which should be operating in 2024.

“At this stage, our focus is on developing our first commercial projects in the Czech Republic, Germany and the UK,” he explains.

It seems like a neat solution. There are disused mine shafts all over the world deep enough to house a full-sized Gravitricity installation stretching down 300 metres and more. Blair says that there’s the political will to make it happen too, with policymakers keen to tap into public enthusiasm for a just transition.

It’s impossible to know how many of these will come to fruition; but gravity batteries, by harnessing an infinite, omnipresent force, almost certainly have a role to play.




Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Power supply with scalability optimised
Schneider Electric South Africa Electrical Power & Protection
Schneider Electric has introduced the Easy UPS 3-Phase Modular to the South African marketplace. This robust uninterruptible power supply (UPS) is designed to protect critical loads while offering third-party verified Live Swap functionality.

Read more...
Prioritising arc flash safety
Comtest Electrical Power & Protection
Comtest has developed a range of thermal imaging and wireless testing tools from Fluke, designed to ensure safety is the top priority for engineers working in potentially dangerous arc flash zones.

Read more...
Advanced harmonic power analyser
Electrical Power & Protection
Industries with high motor usage such as milling, bottling plants, plastic manufacturing, and refrigeration often struggle with electrical inefficiencies that lead to increased costs and potential equipment damage. Many of these businesses are unaware of the impact of electrical harmonics – additional, unwanted frequencies created by nonlinear loads like computers,variable speed drives and LED lighting.

Read more...
Energy efficiency with lighting
Electrical Power & Protection
Over the past decade, more companies have come to understand the benefits of retrofitting their industrial facilities’ lighting solutions. Referro Systems is able to realise significant energy savings for its clients.

Read more...
Simplifying battery management for remote dual-voltage systems
Omniflex Remote Monitoring Specialists Electrical Power & Protection
Ian Loudon, international marketing and sales manager at remote monitoring specialist, Omniflex outlines the advantages of dual-voltage power supply in field environments.

Read more...
Monitoring voltage continuously
Turck Banner Southern Africa Electrical Power & Protection
Get a more comprehensive view of equipment and overall plant health while improving the accuracy of power calculations with Turck Banner’s new AC voltage sensor.

Read more...
IP67 power supplies with IO-Link interface for direct voltage
ifm - South Africa Electrical Power & Protection
Almost all electrical automation technology components require a voltage supply with 24 V DC. ifm presents new power supplies that meet the IP67 protection rating and can thus provide the voltage directly where it is needed.

Read more...
No more shocking, inaccurate insulation testing
Comtest Electrical Power & Protection
Fluke has introduced the Fluke 1535 and 1537 2500 V insulation resistance testers, engineered to simplify frontline troubleshooting, whether on the factory floor or working in the field at a solar installation.

Read more...
Paper trail of energy optimisation
Electrical Power & Protection
Over 3,8 million tons of paper products are produced in South Africa each year, and thermal energy plays a pivotal role in both the preparation of raw materials and the pressing and drying of the fibre layers that are ultimately processed into these products. The R50 billion local pulp and paper industry faces exciting opportunities, but also some obstacles, as it seeks to boost competitiveness and contain costs.

Read more...
Reducing the carbon footprint by eliminating SF6
Schneider Electric South Africa Electrical Power & Protection
SF6 is a manmade gas widely used in the electricity industry for insulation and current breaking, and in medium- and high-voltage equipment. Unfortunately it is also the world’s most potent greenhouse gas. One important step is implementing SF6-free equipment in today’s modernised grid infrastructure.

Read more...