IT in Manufacturing


Beckhoff solutions for Industrie 4.0 and IoT

Technews Industry Guide - Industrial Internet of Things 2016 IT in Manufacturing

As information technology and automation technology continue to converge, cloud-based communication and data services are increasingly being used in industrial automation projects. Beyond the scope of conventional control tasks, applications such as big data, data mining and condition or power monitoring enable the implementation of superior, forward-looking automation solutions. New hardware and software products from Beckhoff for Industrie 4.0 and IoT ensure the simplest possible implementation of such advanced solutions.

Definition of business objectives for increasing the competitive edge

Industrie 4.0 and Internet of Things (IoT) applications do not start with just the underlying technology. In reality, the work begins much earlier than this. It is critically important when implementing IoT projects to examine the corporate business objectives, establishing the benefits to be gained from such projects. From an automation provider perspective, there are two distinct categories of customers: machine manufacturers and their end customers – in other words, the end users of the automated machines.

In the manufacturing sector there is an obvious interest in reducing in-house production costs, both through efficient and reliable production control and also by reducing the number of rejects produced. The traditional machine manufacturer pursues very similar objectives, and above all, is interested in reducing the cost of the machine while maintaining or even increasing production quality. Optimising the machine’s energy consumption and production cycles, as well as enabling predictive maintenance and fault diagnostics, can also be rewarding goals.

Collecting, aggregating and analysing process data

The process data used during production provides a foundation for creating added value and for achieving the above-mentioned business objectives. This includes the machine values that are recorded by a sensor and transmitted via a fieldbus to the PLC. This data can be analysed directly on the controller for monitoring the status of a system using the TwinCAT condition monitoring libraries integrated in the TwinCAT 3 automation software, thereby reducing downtime and maintenance costs.

However, where there are several distributed controllers in production areas, it may not be sufficient to analyse data from a single controller. The aggregated data from multiple or even all controllers in a production system or a specific machine type is often needed to perform sufficient data analysis and make an accurate analytical statement about the overall system.

Previous implementations focused on the use of a central server system within the machine or corporate network that was equipped with data memory, often in the form of a database system. This allowed analysis software to access the aggregated data directly in the database in order to perform corresponding evaluations.

Although such an approach to realise data aggregation and analysis in production facilities worked well, it presented a number of problems at the same time, since the required IT infrastructure had to be made available first. The fact that this gives rise to high hardware and software costs for the corresponding server system can be seen right away.

To complicate matters, the scalability of such a solution is very low. Ultimately the physical limits of the server system are reached at some point, be it the amount of memory available or the CPU power, or the performance and memory size required for analyses.

The path to the public cloud

Cloud-based communication and data services avoid these disadvantages by providing the user with an abstract view of the underlying hardware and software systems. Abstract in this context means that a user does not need to give any thought to the respective server system when using a service, rather, only the use of the respective services need be considered.

The public cloud service providers, such as Microsoft Azure or Amazon Web Services, for example, provide users with a range of services from their own data centres. This starts with virtual machines, where the actual user has control of the operating system and the applications installed on it, and stretches to abstracted communication and data services, which can be integrated by the user in an application. The latter, for example, also includes access to machine learning algorithms, which can make predictions and perform classifications regarding specific data states on the basis of certain machine and production information. The algorithms obtain the necessary contents with the aid of the communication services.

Such communication services are usually based on communication protocols, which in turn are based on the publish/subscribe principle. This offers definite advantages from the resulting decoupling of all applications that communicate with one another. On one hand, the various communication participants no longer need to know each other – in other words, any time-consuming disclosure of address information is reduced. On the other, data communication with the cloud service, via the message broker, involves a purely outgoing communication connection from the perspective of the terminal device – regardless of whether data is sent (publish) or received (subscribe). The advantages this offers for configuring the IT infrastructure are immediately clear: no incoming communication connections have to be configured, for example in firewalls or other network terminals. This significantly reduces IT infrastructure set-up time and maintenance costs.

Publish/subscribe communication with public cloud services.
Publish/subscribe communication with public cloud services.

Products for Industrie 4.0 and IoT

Beckhoff provides users with a wide variety of components for simple and standardised integration into cloud-based communication and data services. The IoT products within the TwinCAT 3 automation software offer varied functionalities for exchanging process data by means of standardised publish/subscribe-based communication protocols and for accessing special data and communication services of public cloud service providers. Corresponding services can be hosted in public cloud systems, such as Microsoft Azure or Amazon Web Services, but can be used just as effectively in private cloud applications.

If I/O signals are to be forwarded directly without a control program, then Beckhoff’s EK9160 IoT Bus Coupler allows I/O data to be parameterised on the device for sending to a cloud service. The bus coupler then independently carries out the sending of the digital or analog I/O values. An IoT coupling station consists of an EK9160 and a virtually limitless number of powerful and ultra-fast EtherCAT terminals. The data is sent in a user-friendly, standardised JSON format to the cloud service and can also be transmitted in encrypted form if required. Extended mechanisms, such as local buffering of I/O data in the case of an interrupted Internet connection, are provided here in the same way as a monitoring function for connected fieldbuses. The I/O signals can therefore not only be collected by means of EtherCAT, but also via other fieldbuses, such as CANopen or Profibus.

Analytics and machine learning

Once the data has been sent to a public or private cloud service, the next question is how it can continue to be processed. As previously mentioned, many public cloud providers offer various analytics and machine learning services that can be used for further examination of process data. Moreover, Beckhoff also has its own analytics platform for users to take advantage of, namely TwinCAT Analytics. This platform provides relevant mechanisms for data analysis, with all process-related machine data being recorded in a precise and cyclical manner. All machine processes can therefore be fully recorded as a result.

Depending on requirements, this data can either be stored for evaluation locally on the machine processor, or within a public or private cloud solution. TwinCAT Analytics uses TwinCAT IoT to connect to cloud solutions, ensuring seamless data communication. This provides the power to create new business ideas and models for both the machine manufacturer and the respective end customers.

Conclusion

Industrie 4.0 and IoT are on everyone’s minds. Likewise, these concepts are important when the realisation of innovative new business models is a requirement for the underlying infrastructure. This also drives the increased convergence of IT and automation technologies. Cloud-based data services can help implement such automation projects, as they save the machine manufacturer or end customer from having to provide the corresponding IT expertise.

With TwinCAT IoT and the EK9160 cloud bus coupler, Beckhoff provides customers with two new products for integrating such cloud-based data services quickly and easily into the control project. Additionally, TwinCAT Analytics enables the support of such projects using a powerful analytics platform, which facilitates comprehensive analysis of the recorded process data.

For more information contact Kenneth McPherson, Beckhoff Automation, +27 (0)11 795 2898, kennethm@beckhoff.com, www.beckhoff.co.za



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

Bringing brownfield plants back to life
Schneider Electric South Africa IT in Manufacturing
Today’s brownfield plants are typically characterised by outdated equipment and processes, and face challenges ranging from inefficient operations to safety hazards. However, all is not lost, as these plants stand to gain a lot from digitalisation and automation.

Read more...
Generative AI for immersive real-time visualisation
Siemens South Africa IT in Manufacturing
Siemens will deepen its collaboration with NVIDIA to help build the industrial metaverse.

Read more...
Award-winning Gen AI solutions
IT in Manufacturing
Amazon Web Services recently hosted an exclusive event in South Africa on ‘Elevating Possibilities with Partners - a Showcase of GenAI Excellence’. This event brought together ten esteemed partners, including Synthesis Software Technologies, to highlight innovative advancements in the field of Generative AI.

Read more...
AI is driving data centres to the edge
Schneider Electric South Africa IT in Manufacturing
The data centre has become the cornerstone that links our digitally interconnected world. At the same time, the rapid growth and application of AI and machine learning (ML) is shaping the design and operation of data centres.

Read more...
Full-scale central control room simulator
Valmet Automation IT in Manufacturing
Valmet will deliver a full-scale central control room simulator to Nordic Ren-Gas, the leading Nordic green hydrogen and e-methane developer in Finland.

Read more...
Re-imagining business operations with the power of AI
IT in Manufacturing
inq. has introduced a range of artificial intelligence solutions to assist organisations across industry verticals in optimising business operations and improving internal efficiencies.

Read more...
Safe, sustainable cycling helmet technology
Siemens South Africa IT in Manufacturing
Lazer Sport, one of Europe’s leading cycling helmet manufacturers, has adopted the Siemens Xcelerator portfolio of industry software to bring to market KinetiCore, its new proprietary rotational impact protection technology.

Read more...
Flexible EtherCAT communication interface for DALI-2
Beckhoff Automation Fieldbus & Industrial Networking
The EL6821 EtherCAT Terminal from Beckhoff allows up to 64 DALI/DALI-2 slaves and 64 DALI-2 input devices to be connected. The TwinCAT 3 System Manager makes it easy to configure and parameterise DALI devices flexibly.

Read more...
EtherCAT-based control technology for building automation
Beckhoff Automation Fieldbus & Industrial Networking
Modern non-residential buildings place many high demands on building automation. This can be optimally implemented with EtherCAT-based control technology from Beckhoff, which provides an efficient central automation architecture thanks to ultra-fast data communication.

Read more...
Defending against modern-day cyber threats
IT in Manufacturing
The anatomy of cyber threats has changed, meaning that organisations can no longer rely on traditional cybersecurity solutions to protect their perimeter, but should instead rethink their data protection strategy and become proactive in their defence against breaches.

Read more...