Fieldbus & Industrial Networking


Wireless monitoring solution at Optimum Coal

Technews Industry Guide - Wireless 2014 Fieldbus & Industrial Networking Industrial Wireless

Optimum Coal – Koornfontein, is a coal processing plant in Mpumalanga situated between Emalahleni (Witbank) and Hendrina. The plant, spread over a wide geographic area as shown in the satellite photograph, needed to draw information from the remote pump stations located at the dams and bring it back to the central control room for processing. The distances involved (over 2 km) ruled out the possibility of a wired solution, which meant that a wireless telemetry network would be required. It was at this point that Allpronix was brought in to assist with the design architecture.

“What was initially required was to bring the water levels back to the central scada system for monitoring and control purposes,” says Allpronix field and instrument engineer, Jurie Weidemann. “But subsequently we found that there were other areas of the plant that could benefit from the wireless telemetry system we had in mind.

“There are currently a total of 8 main wireless links that are being used for plant monitoring, telemetry and PLC/scada diagnostics and troubleshooting. The network is a combination of 5 and 2,4 GHz components, the 5 GHz with its faster data rate is used as the backbone network to cut down on possible interference and the 2,4 GHz is used for the close proximity links. As the plant expands, more links will be added to the network with a total of 35 CPEs (customer premises equipment) expected to make up the final wireless network spread across the plant and surrounding pump stations.”

Equipment used in the network design so far includes:

* Airlive Outdoor wireless CPEs: 2,4 GHz – 802.11g compliant max 54 Mbit/s.

* Airlive Outdoor wireless CPEs: 5 GHz – 802.11a/n compliant with 1T1R technology max 150 Mbit/s.

* I/O over Ethernet: Acromag. Korenix JetNet 2005 – unmanaged 5-port switch.

The Airlive CPEs are powered using passive POE through 12 VDC POE injectors via the shielded CAT5 cable used to connect to the network through Allpronix supplied Korenix 2005, 5 port, as well as other unmanaged switches. The RJ45 connectors are wired as patch cables according to the T568B colour code as set out by the TIA/EIA-568 standard: http://en.wikipedia.org/wiki/TIA/EIA-568

Project progress: problems experienced, corrective action and fine tuning

In South Africa, there are 13 available channels for 2,4 GHz CPEs. Initially, the network was set up ad-hoc, with not much attention given to interference between channels or interference from power lines and other sources. The drawback using 2,4 GHz is that the frequency of the harmonics generated by heavy electrical machinery and power lines are often in this range and can therefore cause interference. Also, due to channel overlap, it is best practice to have five degrees of separation between the channels of neighbouring access points.

Figure 1. 802.11b/g channels in 2,4 GHz band.
Figure 1. 802.11b/g channels in 2,4 GHz band.

As shown in Figure 1, channels 1, 6 and 11 do not interfere with each other at all. Figure 2 shows how the channels and access points can be arranged to avoid interference when the concentration of access points is high.

Figure 2. Channel separation.
Figure 2. Channel separation.

“We encountered interference primarily on two of the wireless links, namely the link from ‘Plant 3 Control Room’ to ‘C22 Tower’ and the link from ‘C22 Conveyer’ to the ‘FilterPress’,” explains Weidemann. “These two links would work fine for intervals, but would then require a reboot to re-establish the network. The stability of these two links has subsequently been vastly improved by replacing the existing 2,4 GHz CPEs with Airlive’s AirMax5N-ESD, 5 GHz versions, while still keeping possible channel interference in mind. Each link is established by setting up one CPE as an access point and the other as a client. AirMax units are directional and the 16 dBi internal antenna provides the necessary transmitting power to establish reliable wireless communication on a stable 5 GHz frequency band.”

The table shows the current network layout.

Figure 3 shows the network topology of the current links as well as the ‘project in progress’ links. It also shows where there are PLCs and switches that connect all the wireless units to the main network.

Figure 3. Topology diagram.
Figure 3. Topology diagram.

“As is evident from the diagram, this project is a work in progress and as there is still plenty of plant expansion in the pipeline, the telemetry network will have to grow as required in order to meet the increased demand,” concludes Weidemann.

For more information contact Jurie Weidemann, Allpronix, +27 (0) 11 795 9500, jurie@allpronix.com, www.allpronix.com



Credit(s)



Share this article:
Share via emailShare via LinkedInPrint this page

Further reading:

EtherCAT interoperability removes industrial networking barriers
Fieldbus & Industrial Networking
Selecting the right communication technology is one of the most important decisions engineers make, and interoperability helps with that decision. Key development tools and standards ensure interoperability among many EtherCAT devices and manufacturers.

Read more...
Condition monitoring to go
Turck Banner Southern Africa Fieldbus & Industrial Networking
Anyone who wants to efficiently monitor the climate in control cabinets will find a comprehensive range of control cabinet monitors for the DIN rail in Turck Banner’s cabinet condition monitoring family.

Read more...
Affordable building management system product range
Fieldbus & Industrial Networking
Schneider Electric has unveiled its EasyLogic Building Management System range, designed for basic building architectures, to the local marketplace. This is a complete and cost-effective range of field controllers and sensors that are both easy to install and scalable.

Read more...
Flexible EtherCAT communication interface for DALI-2
Beckhoff Automation Fieldbus & Industrial Networking
The EL6821 EtherCAT Terminal from Beckhoff allows up to 64 DALI/DALI-2 slaves and 64 DALI-2 input devices to be connected. The TwinCAT 3 System Manager makes it easy to configure and parameterise DALI devices flexibly.

Read more...
EtherCAT-based control technology for building automation
Beckhoff Automation Fieldbus & Industrial Networking
Modern non-residential buildings place many high demands on building automation. This can be optimally implemented with EtherCAT-based control technology from Beckhoff, which provides an efficient central automation architecture thanks to ultra-fast data communication.

Read more...
PC-based control for university studies
Beckhoff Automation Fieldbus & Industrial Networking
The IDEA box developed at Heilbronn University of Applied Sciences is designed to introduce students to the topic of Industry 4.0 in a simple and practical way. At the core of the corresponding demo case is PC-based control from Beckhoff.

Read more...
A new standard in high-speed Ethernet communication
Fieldbus & Industrial Networking
The TXMC897 module from TEWS Technologies supports a range of Ethernet standards and speeds, making it suitable for diverse applications, including the defence, industrial, and IIoT markets.

Read more...
Data-driven battery production
Turck Banner Southern Africa Fieldbus & Industrial Networking
The availability of high-performance batteries at moderate prices is one of the most important factors for the success of electromobility. As a long-standing automation partner to the automotive industry, Turck Banner supports the major battery manufacturers with its know-how.

Read more...
Bring critical temperature data to your condition monitoring system
Turck Banner Southern Africa Fieldbus & Industrial Networking
Data conversion just got easier. Turck Banner converters are compact, simple add-ons that seamlessly fit into your factory applications. You can take various types of signals such as discrete, analogue and many others, and convert them to protocols like IO-link, PICK-IQ, PWM/PFM, and Modbus.

Read more...
Case History 190: Measurement problem ruins level control.
Michael Brown Control Engineering Editor's Choice Fieldbus & Industrial Networking
The widely held belief in many plants that tuning will solve all base layer control problems is completely fallacious. Bad tuning is generally not the main reason for loops to perform badly. It is important when performing optimisation that all elements in a loop are considered, in addition to the control strategy, before even thinking of tuning.

Read more...