classic | mobile
 

Search...

SA Instrumentation & Control Buyers' Guide

Technews Industry Guide - IIoT 2018

Technews Industry Guide - Maintenance, Reliability & Asset Optimisation

 

Safety solutions for intelligent human-robot collaborations
Technews Industry Guide: Industrial Internet of Things & Industry 4.0, IS & Ex


Human-robot collaboration (HRC) describes a work scenario in which humans and automated machines share the same workspace and work within it simultaneously. Driven by Industry 4.0, this model promises the interaction of highly flexible work processes, maximum plant availability and productivity, as well as economic efficiency. But HRC will only be able to live up to this promise when appropriate application-specific safety technology is assured.

Human-robot interaction: a question of space and time

Industrial automation focused on interaction between humans and machines long before the initiation of Industry 4.0. Until now, two interaction scenarios – coexistence and cooperation – have dominated, representing about 90 percent of such situations. Space and time are the important interaction parameters here.

Coexistence describes a work situation in which the human and the machine are in neighbouring areas at the same time during the interaction. Cooperation, on the other hand, is an interaction during which the human and the machine share the same work area but work within it at different times.

A third form of interaction is increasingly being focused on within the framework of Industry 4.0: collaboration between the human and the robot during which they share the same workspace at the same time. In such collaborative scenarios, the standard industrial robot with safe kinematics is no longer sufficiently safe, so collaborative robots must be used. In this case the forces, speeds and travel paths of the robot must be monitored, and limited, depending on the actual degree of risk. If necessary, the robot is stopped or switched off. The distance between the human and the robot thus becomes a decisive safety-relevant parameter.

Risk assessment is always the starting point – even with ‘coboters’

Since no two human-robot collaborations are the same, an individual risk assessment of the HRC is necessary even if the robot used has been specially developed for this collaboration with humans. Such a ‘coboter’ will already have several of the features of an inherently safe design right from the initial considerations. At the same time, however, the collaboration space must also meet fundamental requirements, e.g. regarding minimum distances to neighbouring accessible areas that present crushing or trapping risks. The standards basis for the functional safety of HRC applications consists of general standards, such as IEC 61508, IEC 62061 and ISO 13849-1/-2. In addition, ISO 10218-1/-2 on the safety of industrial robots and, especially, ISO/TS 15066 on robots for collaborative operation, must be taken into account.

Developers and integrators of robot systems must not only carefully examine the functionalities and compliance with standards of the design-related protective measures undertaken by the robot’s producer, but also take into account any residual hazards and risks. It is therefore necessary to carry out a risk assessment on the robot system according to ISO 12100 in order to derive appropriate safety measures for risk reduction, e.g. safety light curtains or safety laser scanners.

Safety-oriented operating modes of collaborating robot systems

According to the technical specification ISO/TS 15066, there are four different types of collaborative operation. The ‘safety-rated monitored stop’ halts the robot for interaction with the human; ‘hand guiding’ ensures safe HRC because the robot is deliberately guided manually at an appropriately reduced speed. In the third type of collaboration, ‘power and force limiting’, the necessary safety is achieved by reducing the power, force and speed of the robot, e.g. by using limiting functions for safety-relevant control systems, or an inherently safe design of the robot with a biomechanical load limit at which no hazard or injuries are to be expected. This takes place regardless of whether there is any intentional or unintentional physical contact between the robot and a human.

The fourth type of collaboration, ‘speed and separation monitoring’, is very much in the spirit of highly flexible work scenarios. It is based on monitoring of the speed and travel paths of the robot and adapted to the work speed of the operator in the protected collaboration space. Safety distances are permanently monitored and, when necessary, the robot is slowed down or stopped, or its travel path is changed. The robot system can automatically resume its movements, with the usual speeds and travel paths, when the distance between the operator and the machine increases again to greater than the permitted minimum distance. This restores the robot’s productivity without delay.

Functional safety for HRC: expertise, product range and implementation from a single source

Of the four different types of collaboration quoted in ISO/TS 15066, it is ‘speed and separation monitoring’ that offers the greatest future potential in HRC applications. Therefore, whilst not neglecting the still-dominant interaction scenarios of coexistence and cooperation, it is clear that safety-oriented sensor and control technology faces new challenges in enabling unhindered human-robot collaboration.

For more information contact Mark Madeley, SICK Automation Southern Africa, +27(0)11 472 3733, mark.madeley@sickautomation.co.za, www.sickautomation.co.za


Credit(s)
Supplied By: SICK Automation Southern Africa
Tel: +27 11 472 3733
Fax: +27 11 472 3078
Email: info@sickautomation.co.za
www: www.sickautomation.co.za
Share via email     Share via LinkedIn   Print this page

Further reading:

  • Monitoring of stacked workpieces
    July 2018, Beckhoff Automation, IS & Ex
    Simple, flexible and cost-effective machine safety implementation.
  • New concepts for operator workstations in hazardous areas
    July 2018, Pepperl+Fuchs, IS & Ex
    For production control and process control systems, visualisation software is an integral component of the system control, which is typically located outside of the production area. In these situations, ...
  • Extech to distribute i.safe Mobile in sub-Saharan Africa
    July 2018, Extech Safety Systems, IS & Ex
    Extech Safety Systems has partnered with GoRugged to distribute i.safe Mobile products in sub-Saharan Africa. The IS520.1 is an industrial smartphone with current technology for use in Zone 1/21. It combines ...
  • AST’s Pyroshield fire protection
    July 2018, Alien Systems & Technologies, IS & Ex
    Gaseous fire extinguishing system saves the South African economy millions.
  • Variable speed drives in Europe’s largest underground carpark
    July 2018, Parker Hannifin - Sales Company South Africa, IS & Ex
    Parker Hannifin has recently completed a project to replace all the motors supporting the operation of ventilation systems in Europe’s largest underground carpark, situated under La Défense, Paris, with ...
  • IR windows improve safety and ­reduce cost
    July 2018, R&C Instrumentation, IS & Ex
    Thermal imaging is a well-established and proven method of preventative maintenance for electrical equipment. But the process does not come without risk. Removing panels to gain access to switchgear for ...
  • New Mining iWap107 released
    July 2018, IS & Ex
    Extech has announced the approval and supply of the first mining approved iWap107s to Sedna Industrial IT Solutions. The iWap107 contains a Cisco access point and Ethernet switch, allowing for copper ...
  • Smart sensors for smart factories
    Technews Industry Guide: Industrial Internet of Things & Industry 4.0, SICK Automation Southern Africa, Sensors & Transducers
    Parts of the so-called ‘smart factory’ are already reality, and many processes and functions between information and operations spheres are becoming increasingly coordinated. At the centre of implementing ...
  • Smart sensors for industrial motion control
    July 2018, Parker Hannifin - Sales Company South Africa, IS & Ex
    Smart sensors are facilitating the manufacturing sector’s shift to Industry 4.0. The latest smart sensors are able to share information with the controller via technologies such as IO-Link. They can also ...
  • Linear encoders for future-proof position measurement
    July 2018, SICK Automation Southern Africa, Motion Control & Drives
    More and more vehicle manufacturers, integrators, and operations managers are setting their sights on top quality innovations. Everyone wants the added value that came to be standard within industrial ...
  • The next generation in fire detection
    June 2018, Alien Systems & Technologies, IS & Ex
    Cirrus Hybrid represents the next evolutionary step in the advancement of fire detection systems.
  • HellermannTyton offers intrinsically safe multimeters
    June 2018, HellermannTyton, IS & Ex
    The TBM811XEX and TBM812XEX multimeters with a CATIV 1000 V rating from HellermannTyton are designed for hazardous environments such as mining and petrochemical. The approved explosive protection rating ...

 
 
         
Contact:
Technews Publishing (Pty) Ltd
1st Floor, Stabilitas House
265 Kent Ave, Randburg, 2194
South Africa
Publications by Technews
Dataweek Electronics & Communications Technology
Electronic Buyers Guide (EBG)

Hi-Tech Security Solutions
Hi-Tech Security Business Directory

Motion Control in Southern Africa
Motion Control Buyers’ Guide (MCBG)

South African Instrumentation & Control
South African Instrumentation & Control Buyers’ Guide (IBG)
Other
Terms & conditions of use, including privacy policy
PAIA Manual





 

         
    classic | mobile

Copyright © Technews Publishing (Pty) Ltd. All rights reserved.